Riemann solvers in general relativistic hydrodynamics

被引:0
作者
Ibáñez, JM [1 ]
Aloy, MA [1 ]
Font, JA [1 ]
Martí, JM [1 ]
Miralles, JA [1 ]
Pons, JA [1 ]
机构
[1] UVEG, Dept Astron & Astrofis, Burjassot 46100, Spain
来源
GODUNOV METHODS: THEORY AND APPLICATIONS | 2001年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our contribution concerns with the numerical solution of the 3D general relativistic hydrodynamical system of equations within the framework of the {3 + 1} formalism. We summarize the theoretical ingredients which are necessary in order to build up a numerical scheme based on the solution of local Riemann problems. Hence, the full spectral decomposition of the Jacobian matrices of the system, i.e., the eigenvalues and the right and left eigenvectors, is explicitly shown. An alternative approach consists in using any of the special relativistic Riemann solvers recently developed for describing the evolution of special relativistic flows. Our proposal relies on a local change of coordinates in terms of which the spacetime metric is locally Minkowskian and permits an accurate description of numerical general relativistic hydrodynamics.
引用
收藏
页码:485 / 496
页数:6
相关论文
共 19 条
[1]   An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes [J].
Aloy, MA ;
Pons, JA ;
Ibáñez, JM .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 120 (2-3) :115-121
[2]   RIEMANN SOLVER FOR RELATIVISTIC HYDRODYNAMICS [J].
BALSARA, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :284-297
[3]   Numerical {3+1} general relativistic hydrodynamics: A local characteristic approach [J].
Banyuls, F ;
Font, JA ;
Ibanez, JM ;
Marti, JM ;
Miralles, JA .
ASTROPHYSICAL JOURNAL, 1997, 476 (01) :221-231
[4]   A flux-split algorithm applied to relativistic flows [J].
Donat, R ;
Font, JA ;
Ibanez, JM ;
Marquina, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :58-81
[5]  
EULDERINK F, 1995, ASTRON ASTROPHYS SUP, V110, P587
[6]  
FONT JA, 1994, ASTRON ASTROPHYS, V282, P304
[7]   Three-dimensional numerical general relativistic hydrodynamics: Formulations, methods, and code tests [J].
Font, JA ;
Miller, M ;
Suen, WM ;
Tobias, M .
PHYSICAL REVIEW D, 2000, 61 (04)
[8]   SELF-ADJUSTING GRID METHODS FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
HYMAN, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 50 (02) :235-269
[9]   Relativistic jet formation from black hole magnetized accretion disks: Method, tests, and applications of a general relativistic magnetohydrodynamic numerical code [J].
Koide, S ;
Shibata, K ;
Kudoh, T .
ASTROPHYSICAL JOURNAL, 1999, 522 (02) :727-752
[10]   THE ANALYTICAL SOLUTION OF THE RIEMANN PROBLEM IN RELATIVISTIC HYDRODYNAMICS [J].
MARTI, JM ;
MULLER, E .
JOURNAL OF FLUID MECHANICS, 1994, 258 :317-333