SPIN-CUBE MODELS OF QUANTUM GRAVITY

被引:12
作者
Mikovic, A. [1 ,2 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[2] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
关键词
Poincare; 2-group; quantum gravity; state sums; AREA VARIABLES;
D O I
10.1142/S0129055X13430083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the state-sum models of quantum gravity based on a representation 2-category of the Poincare 2-group. We call them spin-cube models, since they are categorical generalizations of spin-foam models. A spin-cube state sum can be considered as a path integral for a constrained 2-BF theory, and depending on how the constraints are imposed, a spin-cube state sum can be reduced to a path integral for the area-Regge model with the edge-length constraints, or to a path integral for the Regge model. We also show that the effective actions for these spin-cube models have the correct classical limit.
引用
收藏
页数:13
相关论文
共 18 条
[1]   Nonperturbative quantum gravity [J].
Ambjorn, J. ;
Goerlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (4-5) :127-210
[2]  
Baez J. C., ARXIV10034485
[3]  
Baez J. C., ARXIV12044339
[4]  
Baez JC, 2000, LECT NOTES PHYS, V543, P25
[5]  
Baez JC, 2012, MEM AM MATH SOC, V219, P1
[6]   2-Group Representations for Spin Foams [J].
Baratin, Aristide ;
Wise, Derek K. .
PLANCK SCALE, 2009, 1196 :28-+
[7]   A note on area variables in Regge calculus [J].
Barrett, JW ;
Rocek, M ;
Williams, RM .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) :1373-1376
[8]  
Crane L., ARXIVMATH0306440
[9]   LQG vertex with finite Immirzi parameter [J].
Engle, Jonathan ;
Livine, Etera ;
Pereira, Roberto ;
Rovelli, Carlo .
NUCLEAR PHYSICS B, 2008, 799 (1-2) :136-149
[10]   Twisted geometries: A geometric parametrization of SU(2) phase space [J].
Freidel, Laurent ;
Speziale, Simone .
PHYSICAL REVIEW D, 2010, 82 (08)