Scatterhoarders drive long- and short-term population dynamics of a nut-producing tree, while pre-dispersal seed predators and herbivores have little effect

被引:17
作者
Elwood, Elise C. [1 ,5 ]
Lichti, Nathanael I. [2 ]
Fitzsimmons, Sara F. [3 ,4 ]
Dalgleish, Harmony J. [1 ]
机构
[1] Coll William & Mary, Dept Biol, Williamsburg, VA 23185 USA
[2] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
[3] Penn State Univ, University Pk, PA 16802 USA
[4] Amer Chestnut Fdn, State Coll, PA USA
[5] Univ Calif Davis, Ctr Populat Biol, 2320 Storer Hall,One Shields Ave, Davis, CA 95616 USA
基金
美国食品与农业研究所;
关键词
American chestnut; browse; Castanea dentata; matrix model; plant population and community dynamics; post-dispersal seed predation; pre-dispersal seed predation; transient analysis; CHESTNUT CASTANEA-DENTATA; AMERICAN CHESTNUT; INSECT HERBIVORY; ACORN WEEVILS; MATRIX MODELS; DEMOGRAPHY; FOREST; TRANSIENT; ABUNDANCE; IMPACTS;
D O I
10.1111/1365-2745.12902
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Both seed predators and herbivores can have profound effects on individual plant growth, reproduction and survival, but their population-level effects are less well understood. While most plants interact with a suite of seed predators and herbivores over their life cycle, few studies incorporate the effects of multiple interacting partners and multiple life stages on plant population growth. We constructed a matrix model using 6years of data from a rare, seed-producing population of American chestnut (Castanea dentata). We combined field demographic data with published experimental results on the effects of pre-dispersal seed predators (weevils) and post-dispersal seed predators (scatter-hoarding vertebrates) and incorporated the effect of vertebrate herbivores estimated from the field data. We explored the impact of these three different animal interactions for short-term (transient) and long-term (asymptotic) tree population growth. In addition, we used the model to explore the conditions under which scatter hoarding would function as a mutualism. Seed predators had greater effect on both short- and long-term population growth than herbivores. Although weevil infestation can greatly reduce the probability of germination, pre-dispersal seed predators had smaller effects on both short- or long-term population growth than post-dispersal predators. The elasticities of weevil-related parameters were also small. The effect of browsers on both the short- and long-term population growth rate were the smallest of the effects studied. Post-dispersal seed predation affected population growth the most in the interactions studied. The probability of seed removal was among the largest elasticities, similar in magnitude to survival of large trees.Synthesis. Our results indicate that neither weevils nor the intensity of browse damage observed at our study site are likely to hinder tree regeneration or reintroduction, although both reduced population growth. Although researchers and forest managers often assume that seeds are unimportant for long-lived tree populations, our test of this assumption shows that scatterhoarders and other post-dispersal seed consumers can significantly limit natural regeneration. Forest management that alters scatterhoarder behaviour could have significant effects on tree population dynamics that are largely unexplored.
引用
收藏
页码:1191 / 1203
页数:13
相关论文
共 63 条
  • [1] [Anonymous], THESIS PURDUE U W LA
  • [2] [Anonymous], 2012, MATLAB STAT TOOLB RE
  • [3] [Anonymous], 1972, NE220 USDA FOR SERV
  • [4] [Anonymous], DRYAD DIGITAL REPOSI
  • [5] [Anonymous], INTEGRATIVE IN PRESS
  • [6] [Anonymous], USDA TECHNICAL B
  • [7] [Anonymous], ECOLOGY SILVICULTURE
  • [8] [Anonymous], CAN J BOT 1 A D
  • [9] [Anonymous], SEED FATE PREDATION
  • [10] [Anonymous], ECOLOGICAL APPL