Indestructibility of compact spaces

被引:5
作者
Dias, Rodrigo R. [1 ,2 ]
Tall, Franklin D. [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil
[2] Minist Educ Brazil, Capes Fdn, BR-70040020 Brasilia, DF, Brazil
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Compact; Indestructible; Selection principles; Topological games; Inaccessible cardinal; Borel's Conjecture; TOPOLOGICAL GAMES; CARDINALITY;
D O I
10.1016/j.topol.2013.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we investigate which compact spaces remain compact under countably closed forcing. We prove that, assuming the Continuum Hypothesis, the natural generalizations to omega(1)-sequences of the selection principle and topological game versions of the Rothberger property are not equivalent, even for compact spaces. We also show that Tall and Usuba's "N-1-Borel Conjecture" is equiconsistent with the existence of an inaccessible cardinal. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2411 / 2426
页数:16
相关论文
共 50 条
  • [41] Complements of consonant spaces in complete spaces
    Jordan, Francis
    TOPOLOGY AND ITS APPLICATIONS, 2022, 315
  • [42] Variations on selective separability in non-regular spaces
    Caserta, Agata
    Di Maio, Giuseppe
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2379 - 2385
  • [43] Bornologies and filters applied to selection principles and function spaces
    Aurichi, Leandro F.
    Mezabarba, Renan M.
    TOPOLOGY AND ITS APPLICATIONS, 2019, 258 : 187 - 201
  • [44] PRODUCTIVELY COUNTABLY TIGHT SPACES OF THE FORM Ck(X)
    Aurichi, Leandro F.
    Mezabarba, Renan M.
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (03): : 1019 - 1029
  • [45] Triple sequence spaces of intuitionistic rough I-convergence defined by compact Bernstein operator
    Esi, Ayhan
    Subramanian, Nagarajan
    Ozdemir, M. Kemal
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [46] THE EQUIVALENCE OF SEQUENTIAL-COMPACTNESS AND PSEUDORADIALNESS IN THE CLASS OF COMPACT T-2-SPACES, ASSUMING CH
    SHAPIROVSKII, B
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 : 322 - 327
  • [47] Curious ill-posedness phenomena in the composition of non-compact linear operators in Hilbert spaces
    Kindermann, Stefan
    Hofmann, Bernd
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (05): : 1001 - 1013
  • [48] ON (β; GΠ)-UNFAVOURABLE SPACES
    Wang, Hanfeng
    He, Wei
    Zhang, Jing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (03) : 439 - 450
  • [49] On non-fragmentability of Banach spaces
    Mirmostafaee, AK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (02): : 163 - 167
  • [50] PRODUCTS OF HUREWICZ SPACES IN THE LAVER MODEL
    Repovs, Dusan
    Zdomskyy, Lyubomyr
    BULLETIN OF SYMBOLIC LOGIC, 2017, 23 (03) : 324 - 333