Indestructibility of compact spaces

被引:5
|
作者
Dias, Rodrigo R. [1 ,2 ]
Tall, Franklin D. [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil
[2] Minist Educ Brazil, Capes Fdn, BR-70040020 Brasilia, DF, Brazil
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Compact; Indestructible; Selection principles; Topological games; Inaccessible cardinal; Borel's Conjecture; TOPOLOGICAL GAMES; CARDINALITY;
D O I
10.1016/j.topol.2013.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we investigate which compact spaces remain compact under countably closed forcing. We prove that, assuming the Continuum Hypothesis, the natural generalizations to omega(1)-sequences of the selection principle and topological game versions of the Rothberger property are not equivalent, even for compact spaces. We also show that Tall and Usuba's "N-1-Borel Conjecture" is equiconsistent with the existence of an inaccessible cardinal. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2411 / 2426
页数:16
相关论文
共 50 条
  • [11] Embedding into free topological vector spaces on compact metrizable spaces
    Gabriyelyan, Saak S.
    Morris, Sidney A.
    TOPOLOGY AND ITS APPLICATIONS, 2018, 233 : 33 - 43
  • [12] A new approach to nearly compact spaces
    Bagchi, Kallol Bhandhu
    Mukharjee, Ajoy
    Paul, Madhusudhan
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (01): : 137 - 147
  • [13] On spaces with a π-base with elements with compact closure
    Bella, Angelo
    Carlson, Nathan
    Gotchev, Ivan S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
  • [14] SHRINKING IN PRODUCTS OF CARDINALS AND COMPACT SPACES
    LAZAREVIC, Z
    TOPOLOGY AND ITS APPLICATIONS, 1994, 58 (02) : 103 - 114
  • [15] Compact, separable, linearly ordered spaces
    Rudin, ME
    TOPOLOGY AND ITS APPLICATIONS, 1998, 82 (1-3) : 397 - 419
  • [16] CELLULAR-COMPACT SPACES AND THEIR APPLICATIONS
    Tkachuk, V. V.
    Wilson, R. G.
    ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 674 - 688
  • [17] COMPACT SPACES REPRESENTABLE AS UNIONS OF NICE SUBSPACES
    ISMAIL, M
    SZYMANSKI, A
    TOPOLOGY AND ITS APPLICATIONS, 1994, 59 (03) : 287 - 298
  • [18] ON THE EXTENT OF SEPARABLE, LOCALLY COMPACT, SELECTIVELY (a)-SPACES
    da Silva, Samuel G.
    COLLOQUIUM MATHEMATICUM, 2015, 141 (02) : 199 - 208
  • [19] Intuitionistic Fuzzy Fractals on Complete and Compact Spaces
    Easwaramoorthy, D.
    Uthayakumar, R.
    CONTROL, COMPUTATION AND INFORMATION SYSTEMS, 2011, 140 : 89 - 96
  • [20] Hereditarily paracompact and compact monotonically normal spaces
    Rudin, ME
    TOPOLOGY AND ITS APPLICATIONS, 2001, 111 (1-2) : 179 - 189