Domination by metric spaces

被引:6
作者
Guerrero Sanchez, David [1 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
关键词
Strong domination by second countable spaces; Lindelof Sigma space; aleph(0)-space;
D O I
10.1016/j.topol.2013.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following the definition of domination of a topological space X by a metric space M introduced by Cascales, Orihuela and Tkachuk (2011) in [3], we define a topological cardinal invariant called the metric domination index of a topological space X as minimum of the set {w (M): M is a metric space that dominates X}. This invariant quantifies or measures the concept of M-domination of Cascales et al. (2011) [3]. We prove (in ZFC) that if K is a compact space such that C-p(K) is strongly dominated by a second countable space then K is countable. This answers a question by the authors of Cascales et al. (2011) [3]. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1652 / 1658
页数:7
相关论文
共 10 条
[1]  
[Anonymous], 2011, A Cp-Theory Problem Book
[2]  
Arhangel'skii A.V., 1992, MATH APPL SOY SER, V78
[3]   The number of K-determination of topological spaces [J].
Cascales, B. ;
Munoz, M. ;
Orihuela, J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (02) :341-357
[4]   Domination by second countable spaces and Lindelof Σ-property [J].
Cascales, B. ;
Orihuela, J. ;
Tkachuk, V. V. .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (02) :204-214
[5]  
Engelking R., 1977, GEN TOPOLOGY
[6]   A new class of weakly countably determined Banach spaces [J].
Kampoukos, K. K. ;
Mercourakis, S. K. .
FUNDAMENTA MATHEMATICAE, 2010, 208 (02) :155-171
[7]  
MICHAEL E, 1966, J MATH MECH, V15, P983
[8]   WEAKLY K-ANALYTIC BANACH-SPACES [J].
TALAGRAND, M .
ANNALS OF MATHEMATICS, 1979, 110 (03) :407-438
[9]  
Tkachuk V.V, 1990, VESTNIK MOSK U MAT M, V45, P19
[10]   A space Cp(X) is dominated by irrationals if and only if it is K-analytic [J].
Tkachuk, VV .
ACTA MATHEMATICA HUNGARICA, 2005, 107 (04) :253-265