Gasification Effect of Metallurgical Coke with CO2 and H2O on the Porosity and Macrostrength in the Temperature Range of 1100 to 1500 °C

被引:39
|
作者
Shin, Soon-Mo [1 ]
Jung, Sung-Mo [1 ]
机构
[1] POSTECH, Grad Inst Ferrous Technol, Pohang 790784, North Gyeongsan, South Korea
关键词
COAL-CHARS; REACTION-KINETICS; CARBON-DIOXIDE; STEAM; REACTIVITY; STRENGTH; INJECTION; PRESSURE; HYDROGEN; GAS;
D O I
10.1021/acs.energyfuels.5b01235
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The gasification of metallurgical cokes with CO2 and H2O on their porosity and macrostrength were investigated in the current study. Cokes were reacted with CO2 or H2O in the temperature range of 1100 to 1500 degrees C. During the reaction, the compositional change of product gases were measured by quadruple mass spectrometry (QMS) for evaluating the gasification rate. Image analysis was carried out to measure the porosity according to the distance from the coke surface. The porosity at the surface of coke gasified with CO2 indicated low values due to its low reactivity, which resulted in the intrapartide reaction to diffuse into the pores at low temperatures while the coke gasified with H2O showed the tendency to react with the coke at the surface. This difference in the reaction behavior can be explained by Thiele modulus. Furthermore, fine powder formation and tensile strength were measured to evaluate macrostrength of cokes. According to the results, the different reaction mode caused an obvious difference in the tendency of macrostrength of the cokes of the same reaction degree. Tensile strength of cokes was strongly affected by their porosity distribution.
引用
收藏
页码:6849 / 6857
页数:9
相关论文
共 50 条
  • [31] Influence of Temperature and CO2 on High-Temperature Behavior and Microstructure of Metallurgical Coke
    Wang, Mingyu
    Liu, Zhenggen
    Chu, Mansheng
    Shi, Quan
    Tang, Jue
    Han, Dong
    Cao, Laigeng
    ACS OMEGA, 2021, 6 (30): : 19569 - 19577
  • [32] Competition and Inhibition Effects during Coal Char Gasification in the Mixture of H2O and CO2
    Zhang, Rui
    Wang, Qin H.
    Luo, Zhong Y.
    Fang, Meng X.
    Cen, Ke F.
    ENERGY & FUELS, 2013, 27 (09) : 5107 - 5115
  • [33] Release of Ca during coal pyrolysis and char gasification in H2O, CO2 and their mixtures
    Yang, Xuhao
    Lv, Peng
    Zhu, Shenghua
    Yan, Lunjing
    Bai, Yonghui
    Li, Fan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 132 : 217 - 224
  • [34] Gasification of Wood Char in Single and Mixed Atmospheres of H2O and CO2
    Tagutchou, J. P.
    Van de Steene, L.
    Sanz, F. J. Escudero
    Salvador, S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (13) : 1266 - 1276
  • [35] Coke Gasification in Blast Furnace Shaft Conditions with H2 and H2O Containing Atmospheres
    Heikkila, Anne M.
    Koskela, Aki M.
    Iljana, Mikko O.
    Lin, Rongshan
    Bartusch, Hauke
    Heikkinen, Eetu-Pekka
    Fabritius, Timo M. J.
    STEEL RESEARCH INTERNATIONAL, 2021, 92 (03)
  • [36] The effect of H2O on the vibrational populations of CO2 in a CO2/H2O microwave plasma: a kinetic modelling investigation
    Verheyen, C.
    Silva, T.
    Guerra, V
    Bogaerts, A.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (09)
  • [37] A kinetic study on lignite char gasification with CO2 and H2O in a fluidized bed reactor
    Tong, Shuai
    Li, Lin
    Duan, Lunbo
    Zhao, Changsui
    Anthony, Edward John
    APPLIED THERMAL ENGINEERING, 2019, 147 : 602 - 609
  • [38] Thermodynamic analysis of methane reforming with CO2, CO2 + H2O, CO2 + O2 and CO2 + air for hydrogen and synthesis gas production
    Freitas, Antonio C. D.
    Guirardello, Reginaldo
    JOURNAL OF CO2 UTILIZATION, 2014, 7 : 30 - 38
  • [39] Investigation on gasification of coffee husk in CO2, H2O, and mixed atmospheres
    Nguyen Hong Nam
    Cao Thi Anh Ngoc
    Tran Van Bay
    VIETNAM JOURNAL OF CHEMISTRY, 2021, 59 (06) : 775 - 780
  • [40] Effect of Water on CO2 Adsorption on CaNaY Zeolite: Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) Complexes
    Drenchev, Nikola L.
    Shivachev, Boris L.
    Dimitrov, Lubomir D.
    Hadjiivanov, Konstantin I.
    NANOMATERIALS, 2023, 13 (16)