Gasification Effect of Metallurgical Coke with CO2 and H2O on the Porosity and Macrostrength in the Temperature Range of 1100 to 1500 °C

被引:39
|
作者
Shin, Soon-Mo [1 ]
Jung, Sung-Mo [1 ]
机构
[1] POSTECH, Grad Inst Ferrous Technol, Pohang 790784, North Gyeongsan, South Korea
关键词
COAL-CHARS; REACTION-KINETICS; CARBON-DIOXIDE; STEAM; REACTIVITY; STRENGTH; INJECTION; PRESSURE; HYDROGEN; GAS;
D O I
10.1021/acs.energyfuels.5b01235
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The gasification of metallurgical cokes with CO2 and H2O on their porosity and macrostrength were investigated in the current study. Cokes were reacted with CO2 or H2O in the temperature range of 1100 to 1500 degrees C. During the reaction, the compositional change of product gases were measured by quadruple mass spectrometry (QMS) for evaluating the gasification rate. Image analysis was carried out to measure the porosity according to the distance from the coke surface. The porosity at the surface of coke gasified with CO2 indicated low values due to its low reactivity, which resulted in the intrapartide reaction to diffuse into the pores at low temperatures while the coke gasified with H2O showed the tendency to react with the coke at the surface. This difference in the reaction behavior can be explained by Thiele modulus. Furthermore, fine powder formation and tensile strength were measured to evaluate macrostrength of cokes. According to the results, the different reaction mode caused an obvious difference in the tendency of macrostrength of the cokes of the same reaction degree. Tensile strength of cokes was strongly affected by their porosity distribution.
引用
收藏
页码:6849 / 6857
页数:9
相关论文
共 50 条
  • [21] Coal Char Gasification in the Mixture of H2O, CO2, H2, and CO under Pressured Conditions
    Zhang, Rui
    Wang, Qin H.
    Luo, Zhong Y.
    Fang, Meng X.
    Cen, Ke F.
    ENERGY & FUELS, 2014, 28 (02) : 832 - 839
  • [22] Interaction between CO2 and H2O on char structure evolution during coal char gasification
    Zhou, Yajie
    Zhu, Shenghua
    Yan, Lunjing
    Li, Fan
    Bai, Yonghui
    APPLIED THERMAL ENGINEERING, 2019, 149 : 298 - 305
  • [23] Investigation of Petroleum Coke Gasification with CO2/H2O Mixtures and S/N Removal Mechanism via ReaxFF MD Simulation
    Tian, Jiazhuang
    Mao, Qiuyun
    You, Zihan
    Zhong, Qifan
    ACS OMEGA, 2023, 8 (20): : 18140 - 18150
  • [24] Utilization of H2O and CO2 in Coal Particle Gasification with an Impact of Temperature and Particle Size
    Sutardi, Tata
    Wang, Linwei
    Karimi, Nader
    Paul, Manosh C.
    ENERGY & FUELS, 2020, 34 (10) : 12841 - 12852
  • [25] Catalytic gasification of a Powder River Basin coal with CO2 and H2O mixtures
    ZhangFan
    FanMaohong
    HuangXin
    Argyle, Morris D.
    ZhangBo
    Towler, Brian
    ZhangYulong
    FUEL PROCESSING TECHNOLOGY, 2017, 161 : 145 - 154
  • [26] Experimental Investigation of Lignin Decomposition and Char Structure During CO2 and H2O/N2 Gasification
    Butterman, Heidi C.
    Castaldi, Marco J.
    WASTE AND BIOMASS VALORIZATION, 2012, 3 (01) : 49 - 60
  • [27] Impact of oxidants O2, H2O, and CO2 on graphene oxidation: A critical comparison of reaction kinetics and gasification behavior
    Liang, Zeng
    Khanna, Rita
    Li, Kejiang
    Guo, Feng
    Ma, Yan
    Zhang, Hang
    Bu, Yushan
    Bi, Zhisheng
    Zhang, Jianliang
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [28] Synergistic effect between CO2 and H2O on reactivity during coal chars gasification
    Bai, Yonghui
    Wang, Yulong
    Zhu, Shenghua
    Yan, Lunjing
    Li, Fan
    Xie, Kechang
    FUEL, 2014, 126 : 1 - 7
  • [29] Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace
    Sun, Min-min
    Zhang, Jian-liang
    Li, Ke-jiang
    Guo, Ke
    Wang, Zi-ming
    Jiang, Chun-he
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2019, 26 (10) : 1247 - 1257
  • [30] Experimental and Kinetic Investigation of CO2 and H2O/N2 Gasification of Biomass Fuels
    Butterman, Heidi C.
    Castaldi, Marco J.
    SYNTHETIC LIQUIDS PRODUCTION AND REFINING, 2011, 1084 : 27 - 73