Strategies to improve the photothermal capacity of gold-based nanomedicines

被引:73
作者
Goncalves, Ariana S. C. [1 ]
Rodrigues, Carolina F. [1 ]
Moreira, Andre F. [1 ]
Correia, Ilidio J. [1 ,2 ]
机构
[1] Univ Beira Interior, CICS UBI Hlth Sci Res Ctr, Av Infante D Henrique, P-6200506 Covilha, Portugal
[2] Univ Coimbra, CIEPQF Dept Engn Quim, Rua Silvio Lima, P-3030790 Coimbra, Portugal
关键词
Gold nanoparticles; Photothermal therapy; Cancer; NIR radiation; NEAR-INFRARED LIGHT; RAY COMPUTED-TOMOGRAPHY; MESOPOROUS SILICA SHELL; POSITRON-EMISSION-TOMOGRAPHY; IN-VIVO TOXICITY; GRAPHENE OXIDE; INDOCYANINE GREEN; CANCER-THERAPY; DRUG-RELEASE; MAGNETIC NANOPARTICLES;
D O I
10.1016/j.actbio.2020.09.008
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The plasmonic photothermal properties of gold nanoparticles have been widely explored in the biomedical field to mediate a photothermal effect in response to the irradiation with an external light source. Particularly, in cancer therapy, the physicochemical properties of gold-based nanomaterials allow them to efficiently accumulate in the tumor tissue and then mediate the light-triggered thermal destruction of cancer cells with high spatial-temporal control. Nevertheless, the gold nanomaterials can be produced with different shapes, sizes, and organizations such as nanospheres, nanorods, nanocages, nanoshells, and nanoclusters. These gold nanostructures will present different plasmonic photothermal properties that can impact cancer thermal ablation. This review analyses the application of gold-based nanomaterials in cancer photothermal therapy, emphasizing the main parameters that affect its light-to-heat conversion efficiency and consequently the photothermal potential. The different shapes/organizations (clusters, shells, rods, stars, cages) of gold nanomaterials and the parameters that can be fine-tuned to improve the photothermal capacity are presented. Moreover, the gold nanostructures combination with other materials (e.g. silica, graphene, and iron oxide) or small molecules (e.g. indocyanine green and IR780) to improve the nanomaterials photothermal capacity is also overviewed. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:105 / 137
页数:33
相关论文
共 228 条
[1]   Gold nanoprism-nanorod face off: comparing the heating efficiency, cellular internalization and thermoablation capacity [J].
Alfranca, Gabriel ;
Artiga, Alvaro ;
Stepien, Grazyna ;
Moros, Maria ;
Mitchell, Scott G. ;
de la Fuente, Jesus M. .
NANOMEDICINE, 2016, 11 (22) :2903-2916
[2]   Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins [J].
Ali, Moustafa R. K. ;
Wu, Yue ;
Tang, Yan ;
Xiao, Haopeng ;
Chen, Kuangcai ;
Han, Tiegang ;
Fang, Ning ;
Wu, Ronghu ;
El-Sayed, Mostafa A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (28) :E5655-E5663
[3]   Hyaluronic acid functionalized nanoparticles loaded with IR780 and DOX for cancer chemo-photothermal therapy [J].
Alves, Catia G. ;
de Melo-Diogo, Duarte ;
Lima-Sousa, Rita ;
Costa, Elisabete C. ;
Correia, Ilidio J. .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2019, 137 :86-94
[4]   IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies [J].
Alves, Catia G. ;
Lima-Sousa, Rita ;
de Melo-Diogo, Duarte ;
Louro, Ricardo O. ;
Correia, Ilidio J. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 542 (1-2) :164-175
[5]  
Ambrosone A, 2014, NANOMEDICINE-UK, V9, P1913, DOI [10.2217/NNM.14.100, 10.2217/nnm.14.100]
[6]   Surface plasmon resonance in gold nanoparticles: a review [J].
Amendola, Vincenzo ;
Pilot, Roberto ;
Frasconi, Marco ;
Marago, Onofrio M. ;
Iati, Maria Antonia .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (20)
[7]   Synthesis of a GNRs@mSiO2-ICG-DOX@Se-Se-FA Nanocomposite for Controlled Chemo-/Photothermal/Photodynamic Therapy [J].
An, Na ;
Lin, Huiming ;
Qu, Fengyu .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2018, (39) :4375-4384
[8]   Gold nanoparticles: opportunities and challenges in nanomedicine [J].
Arvizo, Rochelle ;
Bhattacharya, Resham ;
Mukherjee, Priyabrata .
EXPERT OPINION ON DRUG DELIVERY, 2010, 7 (06) :753-763
[9]   Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy [J].
Bai, Ling-Yu ;
Yang, Xiao-Quan ;
An, Jie ;
Zhang, Lin ;
Zhao, Kai ;
Qin, Meng-Yao ;
Fang, Bi-Yun ;
Li, Cheng ;
Xuan, Yang ;
Zhang, Xiao-Shuai ;
Zhao, Yuan-Di ;
Ma, Zhi-Ya .
NANOTECHNOLOGY, 2015, 26 (31)
[10]   Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia [J].
Bao, Chenchen ;
Conde, Joao ;
Pan, Fei ;
Li, Chao ;
Zhang, Chunlei ;
Tian, Furong ;
Liang, Shujing ;
de la Fuente, Jesus M. ;
Cui, Daxiang .
NANO RESEARCH, 2016, 9 (04) :1043-1056