For a class of p(x)-biharmonic operators with weights

被引:3
作者
Kefi, Khaled [1 ,2 ]
机构
[1] Northern Border Univ, Community Coll Rafha, Ar Ar, Saudi Arabia
[2] Univ Tunis, Dept Math, Fac Sci, Inst Preparatoire Etud Ingn Tunis, Tunis, Tunisia
关键词
p(x)-biharmonic operator; Generalized Sobolev spaces; Ekeland's variational principle; Weak solution;
D O I
10.1007/s13398-018-0567-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fourth order nonlinear problem with a p(x)- biharmonic operators where . RN with N = 2 is a bounded domain with smooth boundary,., mu are positive real numbers, p1, p2, q and a are continuous functions on , V1 and V2 are weight functions in a generalized Lebesgue spaces Ls1(x)() and Ls2(x)() respectively such that V1 may change sign in and V2 = 0 on . We established an existence results using variational approaches and Ekeland's variational principle.
引用
收藏
页码:1557 / 1570
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 2002, THESIS U FRIEBURG GE
[2]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[3]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[4]  
Ayoujil A, 2011, ELECTRON J DIFFER EQ
[5]   Combined Effects of Concave-Convex Nonlinearities in a Fourth-Order Problem with Variable Exponent [J].
Baraket, Sami ;
Radulescu, Vicentiu D. .
ADVANCED NONLINEAR STUDIES, 2016, 16 (03) :409-419
[6]  
Benali K., 2007, POT THEOR STOCH ALB, P21
[7]  
BOUSLIMI M, 1988, EXISTENCE, V58, P1655, DOI DOI 10.1080/17476933.2012.702421
[8]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[9]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[10]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353