Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60)

被引:26
作者
Adjizian, Jean-Joseph [1 ]
Vlandas, Alexis [2 ]
Rio, Jeremy [3 ]
Charlier, Jean-Christophe [1 ]
Ewels, Chris P. [3 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, Chem Etoiles 8, B-1348 Louvain, Belgium
[2] Univ Lille, BioMEMS, CNRS, UMR IEMN 8520, F-59000 Lille, France
[3] Univ Nantes, Inst Mat Jean Rouxel, CNRS, UMR6502, 2 Rue Houssiniere,BP32229, F-44322 Nantes 3, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2016年 / 374卷 / 2076期
关键词
SPECTROSCOPIC DATABASE; EMISSION FEATURES; IR; C-70; GAS; MOLECULES; METALLOFULLERENES; SC-2-AT-C-84; SPECTRA; BANDS;
D O I
10.1098/rsta.2015.0323
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We calculate the infrared (IR) absorption spectra using DFT B3LYP(6-311G) for a range of small closed-cage fullerenes, Cn, n=20, 24, 26, 28, 30 and 60, in both neutral and multiple positive and negative charge states. The results are of use, notably, for direct comparison with observed IR absorption in the interstellar medium. Frequencies fall typically into two ranges, with C-C stretch modes around 1100-1500 cm(-1) (6.7-9.1 mu m) and fullerene-specific radial motion associated with under-coordinated carbon at pentagonal sites in the range 600-800 cm(-1) (12.5-16.7 mu m). Notably, negatively charged fullerenes show significantly stronger absorption intensities than neutral species. The results suggest that small cage fullerenes, and notably metallic endofullerenes, may be responsible for many of the unassigned interstellar IR spectral lines. This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.
引用
收藏
页数:18
相关论文
共 56 条
[31]   Carbon clusters near the crossover to fullerene stability [J].
Kent, PRC ;
Towler, MD ;
Needs, RJ ;
Rajagopal, G .
PHYSICAL REVIEW B, 2000, 62 (23) :15394-15397
[32]   IR, NIR, and UV Absorption Spectroscopy of C602+ and C603+ in Neon Matrixes [J].
Kern, Bastian ;
Strelnikov, Dmitry ;
Weis, Patrick ;
Boettcher, Artur ;
Kappes, Manfred M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (03) :457-460
[33]   IR Absorptions of C60+ and C60- in Neon Matrixes [J].
Kern, Bastian ;
Strelnikov, Dmitry ;
Weis, Patrick ;
Boettcher, Artur ;
Kappes, Manfred M. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (34) :8251-8255
[34]   Structures and electronic states of M@C82 (M = Sc, Y, La and lanthanides) [J].
Kobayashi, K ;
Nagase, S .
CHEMICAL PHYSICS LETTERS, 1998, 282 (3-4) :325-329
[35]   Diatomic metal encapsulates in fullerene cages:: A Raman and infrared analysis of C84 and Sc2@C84 with D2d symmetry [J].
Krause, M ;
Hulman, M ;
Kuzmany, H ;
Dennis, TJS ;
Inakuma, M ;
Shinohara, H .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (17) :7976-7984
[36]   THE STABILITY OF THE FULLERENES C-24, C-28, C-32, C-36, C-50, C-60 AND C-70 [J].
KROTO, HW .
NATURE, 1987, 329 (6139) :529-531
[37]   A spectroscopic study of M@C82 metallofullerenes:: Raman, far-infrared, and neutron scattering results [J].
Lebedkin, S ;
Renker, B ;
Heid, R ;
Schober, H ;
Rietschel, H .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (03) :273-280
[38]   On the structure and vibrational frequencies of C-24 [J].
Martin, JML ;
ElYazal, J ;
Francois, JP .
CHEMICAL PHYSICS LETTERS, 1996, 255 (1-3) :7-14
[39]  
Nagase S, 1998, J COMPUT CHEM, V19, P232, DOI 10.1002/(SICI)1096-987X(19980130)19:2<232::AID-JCC16>3.0.CO
[40]  
2-J