A posteriori error estimators for obstacle problems - another look

被引:77
作者
Braess, D [1 ]
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
关键词
65N15; 65N50;
D O I
10.1007/s00211-005-0634-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a posteriori estimators for the obstacle problem are easily obtained from the theory for linear equations. The theory would be even simpler if the Lagrange multiplier does not have a nonconforming contribution as it has in actual finite element computations.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 10 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[3]  
Braess D., 2001, FINITE ELEMENTS THEO
[4]   Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM [J].
Carstensen, C ;
Bartels, S .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :945-969
[5]  
Chen ZM, 2000, NUMER MATH, V84, P527, DOI 10.1007/s002119900123
[6]   ADAPTIVE MULTILEVEL METHODS FOR OBSTACLE PROBLEMS [J].
HOPPE, RHW ;
KORNHUBER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :301-323
[7]   A posteriori error estimates for elliptic variational inequalities [J].
Kornhuber, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (08) :49-60
[8]  
SUTTMEIER FT, 2004, CONSISTENT ERROR EST
[10]  
Verfurth R., 1996, A review of a posteriori error estimation and adaptive-mesh-refinement techniques