Defects in Quantum Computers

被引:70
作者
Gardas, Bartlomiej [1 ,2 ,3 ]
Dziarmaga, Jacek [3 ]
Zurek, Wojciech H. [1 ]
Zwolak, Michael [1 ]
机构
[1] LANL, Theoret Div, Los Alamos, NM 87545 USA
[2] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
[3] Uniwersytetu Jagiellonskiego, Inst Fizyki, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
D O I
10.1038/s41598-018-22763-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system-the quantum Ising chain in transverse field-and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws in the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. The number of such defects quantifies the extent by which the quantum computer misses the ground state, and is, therefore, imperfect.
引用
收藏
页数:10
相关论文
共 20 条
[1]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[2]   Landau-Zener Tunneling for Dephasing Lindblad Evolutions [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. ;
Grech, P. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (03) :633-639
[3]   Quantum metrology: Dynamics versus entanglement [J].
Boixo, Sergio ;
Datta, Animesh ;
Davis, Matthew J. ;
Flammia, Steven T. ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[4]   Adiabatic quantum dynamics of a random Ising chain across its quantum critical point [J].
Caneva, Tommaso ;
Fazio, Rosario ;
Santoro, Giuseppe E. .
PHYSICAL REVIEW B, 2007, 76 (14)
[5]   Dynamics of a quantum phase transition with decoherence: Quantum Ising chain in a static spin environment [J].
Cincio, Lukasz ;
Dziarmaga, Jacek ;
Meisner, Jakub ;
Rams, Marek M. .
PHYSICAL REVIEW B, 2009, 79 (09)
[6]   Anti-Kibble-Zurek Behavior in Crossing the Quantum Critical Point of a Thermally Isolated System Driven by a Noisy Control Field [J].
Dutta, Anirban ;
Rahmani, Armin ;
del Campo, Adolfo .
PHYSICAL REVIEW LETTERS, 2016, 117 (08)
[7]   Dynamics of a quantum phase transition: Exact solution of the quantum ising model [J].
Dziarmaga, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[8]   Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defect density on the transition rate [J].
Dziarmaga, Jacek .
PHYSICAL REVIEW B, 2006, 74 (06)
[9]   Non-local quantum superpositions of topological defects [J].
Dziarmaga, Jacek ;
Zurek, Wojciech H. ;
Zwolak, Michael .
NATURE PHYSICS, 2012, 8 (01) :49-53
[10]   Dynamics of a quantum phase transition and relaxation to a steady state [J].
Dziarmaga, Jacek .
ADVANCES IN PHYSICS, 2010, 59 (06) :1063-1189