An Artificial Immune System Approach to Business Process Mining

被引:3
作者
Wei, Yonghe [1 ]
Wang, JunZhong [1 ]
机构
[1] Shenyang Ligong Univ, Sch Mech Engn, Shenyang, Peoples R China
来源
ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-4 | 2012年 / 472-475卷
关键词
artificial immune system; business process; process mining;
D O I
10.4028/www.scientific.net/AMR.472-475.35
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of process mining is to identify and extract process patterns from data logs to reconstruct an overall process model. And the model's structural complexity directly impacts readability and quality of the model. Immune systems have many characteristics such as uniqueness, autonomous, recognition of foreigners, distributed detection, and noise tolerance. This paper outlines an alternative approach to business process mining utilizing an artificial immune systems (AIS) technique, and some main steps and operators were depicted.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 11 条
  • [1] Agrawal R, 1998, LECT NOTES COMPUT SC, V1377, P469
  • [2] Al-Enezi J., 2010, INT J RES REV APPL S, P118
  • [3] Alves de Medeiros A. L., 2006, THESIS EINDHOVEN TU
  • [4] Cook J. E., 1998, ACM Transactions on Software Engineering and Methodology, V7, P215, DOI 10.1145/287000.287001
  • [5] de Castro LN, 2003, SOFT COMPUT, V7, P526, DOI [10.1007/S00500-002-0237-z, 10.1007/S00500-002-0237-Z]
  • [6] Genetic process mining: an experimental evaluation
    de Medeiros, A. K. A.
    Weijters, A. J. M. M.
    van der Aalst, W. M. P.
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2007, 14 (02) : 245 - 304
  • [7] Comparison of artificial immune systems and genetic algorithms in electrical engineering optimization
    Freschi, Fabio
    Repetto, Maurizio
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 25 (04) : 792 - 811
  • [8] Turner C. J., 2008, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Atlanta, GA, USA, 12-16 July, P1307
  • [9] Process mining: a research agenda
    van der Aalst, WMP
    Weijters, AJMM
    [J]. COMPUTERS IN INDUSTRY, 2004, 53 (03) : 231 - 244
  • [10] Workflow mining: A survey of issues and approaches
    van der Aalst, WMP
    van Dongen, BF
    Herbst, J
    Maruster, L
    Schimm, G
    Weijters, AJMM
    [J]. DATA & KNOWLEDGE ENGINEERING, 2003, 47 (02) : 237 - 267