Hamiltonian Properties of the 3-(γ,2)-Critical Graphs

被引:0
作者
Zhao Chengye [1 ,2 ]
Yang Yuansheng [2 ]
Sun Linlin [2 ]
机构
[1] China Jiliang Univ, Coll Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
关键词
edge-critical; dominating path; Hamiltonian path; 3-DOMINATION-CRITICAL GRAPHS; CONNECTIVITY; INDEPENDENCE; PATHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ewa Wojcicka (Journal of Graph Theory, 14(1990), 205-215) showed that every connected, 3-gamma-critical graph on more than 6 vertices has a Hamiltonian path. Henning et al. (Discrete Mathematics, 161(1996), 175-184) defined a graph G to be k-(gamma,d)-critical graph if gamma(G) = k and gamma(G + uv) = k - 1 for each pair u, v of nonadjacent vertices of G that are at distance at most d apart. They asked if a 3-(gamma,2)-critical graph must contain a dominating path. In this paper, we show that every connected, 3-(gamma, 2)-critical graph must contain a dominating path. Further we show that every connected, 3-(gamma, 2)-critical graph on more than 6 vertices has a Hamiltonian path.
引用
收藏
页码:177 / 192
页数:16
相关论文
共 17 条
[1]  
[Anonymous], J COMBIN MATH COMBIN
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]   Hamilton-connectivity of 3-domination-critical graphs with α≤δ [J].
Chen, YJ ;
Tian, F ;
Wei, B .
DISCRETE MATHEMATICS, 2003, 271 (1-3) :1-12
[4]   A new proof of Wojcicka's conjecture [J].
Chen, YJ ;
Tian, F .
DISCRETE APPLIED MATHEMATICS, 2003, 127 (03) :545-554
[5]  
Chen YJ, 2002, UTILITAS MATHEMATICA, V61, P239
[6]   Hamilton-connectivity of 3-domination critical graphs with α=δ+2 [J].
Chen, YJ ;
Tian, F ;
Zhang, YQ .
EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (07) :777-784
[7]   Codiameters of 3-connected 3-domination critical graphs [J].
Chen, YJ ;
Tian, F ;
Wei, B .
JOURNAL OF GRAPH THEORY, 2002, 39 (01) :76-85
[8]  
Favaron O, 1997, J GRAPH THEOR, V25, P173, DOI 10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.0.CO
[9]  
2-I
[10]   The diversity of domination [J].
Henning, MA ;
Oellermann, OR ;
Swart, HC .
DISCRETE MATHEMATICS, 1996, 161 (1-3) :161-173