Gauss-Jordan elimination methods for the Moore-Penrose inverse of a matrix

被引:22
作者
Ji, Jun [1 ]
机构
[1] Kennesaw State Univ, Dept Math & Stat, Kennesaw, GA 30144 USA
关键词
Computational complexity; Gauss-Jordan elimination; Moore-Penrose inverse;
D O I
10.1016/j.laa.2012.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an alternative explicit expression for the Moore-Penrose inverse of a matrix. Based on this expression, we propose a Gauss-Jordan elimination method for the computation of A(dagger). Its computational complexity indicates that this method is more efficient than the existing Gauss-Jordan elimination method in the literature for a large class of problems. An example is included to illustrate the new method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1835 / 1844
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1979, Generalized inverses of linear transformations
[2]  
Ben-Israel A., 2003, GEN INVERSE THEORY A
[3]   BORDERED MATRICES [J].
BLATTNER, JW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03) :528-536
[4]   Untitled [J].
Chen, Xiao-Ping .
ORGANIZATIONAL BEHAVIOR AND HUMAN DECISION PROCESSES, 2011, 114 (01) :1-2
[5]   Explicit expressions of the generalized inverses and condensed Cramer rules [J].
Ji, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 :183-192
[6]  
Moore EH, 1920, Bull Am Math Soc, V26, P394, DOI [DOI 10.1090/S0002-9904-1920-03322-7, 10.1090/S0002-9904-1920-03322-7]
[7]  
Penrose R., 1955, P CAMBRIDGE PHILOS S, V51, P143
[8]   The representation and computation of generalized inverse AT,(2)S [J].
Sheng, Xingping ;
Chen, Guoliang ;
Gong, Yi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (01) :248-257
[9]   A note of computation for M-P inverse A† [J].
Sheng, Xingping ;
Chen, Guoliang .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (10) :2235-2241
[10]  
Wang Guorong., 2004, Generalized Inverses: Theory and Computations