Adaptive synchronization of a class of fractional-order chaotic systems

被引:13
作者
Ma Tie-Dong [1 ]
Jiang Wei-Bo [1 ]
Fu Jie [2 ]
Chai Yi [1 ]
Chen Li-Ping [1 ]
Xue Fang-Zheng [1 ]
机构
[1] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Optoelect Engn, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
chaos synchronization; fractional-order chaotic systems; adaptive synchronization; PROJECTIVE SYNCHRONIZATION; HYPERCHAOTIC SYSTEM; DYNAMICS;
D O I
10.7498/aps.61.160506
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In view of chaos synchronization of a class of fractional-order chaotic systems, a novel adaptive controller and adaptive updating law are designed based on the quasi-Lyapunov stability theory for fractional-order systems. The derived method has some advantages such as simple structure, low control cost and high generality compared with the existing results. Furthermore, the method can be applied to most typical fractional-order chaotic systems. Finally, numerical simulations are used to illustrate the effectiveness of the proposed synchronization method.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao .
PHYSICS LETTERS A, 2011, 375 (21) :2099-2110
[2]   Study on the fractional-order Liu chaotic system with circuit experiment and its control [J].
Chen Xiang-Rong ;
Liu Chong-Xin ;
Wang Fa-Qiang ;
Li Yong-Xun .
ACTA PHYSICA SINICA, 2008, 57 (03) :1416-1422
[3]   Modified impulsive synchronization of fractional order hyperchaotic systems [J].
Fu Jie ;
Yu Miao ;
Ma Tie-Dong .
CHINESE PHYSICS B, 2011, 20 (12)
[4]   Adaptive synchronization of a new hyperchaotic system with uncertain parameters [J].
Gao, Tiegang ;
Chen, Zengqiang ;
Yuan, Zhuzhi ;
Yu, Dongchuan .
CHAOS SOLITONS & FRACTALS, 2007, 33 (03) :922-928
[5]  
Gao X, 2005, CHINESE PHYS, V14, P908, DOI 10.1088/1009-1963/14/5/009
[6]  
Hu J B, 2007, ACTA PHYS SINICA, V58, P2235
[7]   Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems [J].
Jia Li-Xin ;
Dai Hao ;
Hui Meng .
CHINESE PHYSICS B, 2010, 19 (11)
[8]   Chaos and hyperchaos in the fractional-order Rossler equations [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 :55-61
[9]   Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal [J].
Lu, JG .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 :107-118
[10]   Chaotic dynamics and synchronization of fractional-order Arneodo's systems [J].
Lu, JG .
CHAOS SOLITONS & FRACTALS, 2005, 26 (04) :1125-1133