Directional supercontinuum generation: the role of the soliton

被引:12
作者
Christensen, Simon [1 ]
Rao, Shreesha D. S. [1 ]
Bang, Ole [1 ,2 ]
Bache, Morten [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DTU Foton, Orsteds Plads, DK-2800 Lyngby, Denmark
[2] NKT Photon AS, Blokken 84, DK-3460 Birkerod, Denmark
基金
欧盟地平线“2020”;
关键词
SELF-FREQUENCY SHIFT; DISPERSION; FIBERS; PULSE; PROPAGATION; WAVELENGTH; BANDWIDTH; COHERENT;
D O I
10.1364/JOSAB.36.00A131
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we numerically study supercontinuum generation by pumping a silicon nitride waveguide, with two zero-dispersion wavelengths, with femtosecond pulses. The waveguide dispersion is designed so that the pump pulse is in the normal-dispersion regime. We show that because of self-phase modulation, the initial pulse broadens into the anomalous-dispersion regime, which is sandwiched between the two normal-dispersion regimes, and here a soliton is formed. The interaction of the soliton and the broadened pulse in the normal-dispersion regime causes additional spectral broadening through formation of dispersive waves by non-degenerate four-wave mixing and cross-phase modulation. This broadening occurs mainly towards the second normal-dispersion regime. We show that pumping in either normal-dispersion regime allows broadening towards the other normal-dispersion regime. This ability to steer the continuum extension towards the direction of the other normal-dispersion regime beyond the sandwiched anomalous-dispersion regime underlies the directional supercontinuum notation. We numerically confirm the approach in a standard silica microstructured fiber geometry with two zero-dispersion wavelengths. (C) 2019 Optical Society of America
引用
收藏
页码:A131 / A138
页数:8
相关论文
共 50 条
[41]   Enhanced supercontinuum generation in tapered tellurite suspended core fiber [J].
Picot-Clemente, J. ;
Strutynski, C. ;
Amrani, F. ;
Desevedavy, F. ;
Jules, J-C ;
Gadret, G. ;
Deng, D. ;
Cheng, T. ;
Nagasaka, K. ;
Ohishi, Y. ;
Kibler, B. ;
Smektala, F. .
OPTICS COMMUNICATIONS, 2015, 354 :374-379
[42]   Watt-level 1.6 μm dissipative soliton ultrafast laser and external generation of-70 fs noise-like pulses for supercontinuum generation [J].
Yang, Haolin ;
He, Sailing .
INFRARED PHYSICS & TECHNOLOGY, 2023, 134
[43]   Supercontinuum generation in tapered rib waveguide [J].
Hu, Hongyu ;
Li, Wenbo ;
Dutta, Niloy K. .
PHOTONICS APPLICATIONS FOR AVIATION, AEROSPACE, COMMERCIAL, AND HARSH ENVIRONMENTS V, 2014, 9202
[44]   Filamentation and supercontinuum generation in lanthanum glass [J].
Yang, Yuxia ;
Liao, Meisong ;
Li, Xia ;
Bi, Wanjun ;
Ohishi, Yasutake ;
Cheng, Tonglei ;
Fang, Yongzheng ;
Zhao, Guoying ;
Gao, Weiqing .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (02)
[45]   Quantum model for supercontinuum generation process [J].
Bezgabadi, A. Safaei ;
Bolorizadeh, M. A. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[46]   Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform [J].
Arteaga-Sierra, F. R. ;
Milian, C. ;
Torres-Gomez, I. ;
Torres-Cisneros, M. ;
Molto, G. ;
Ferrando, A. .
OPTICS EXPRESS, 2014, 22 (19) :23686-23693
[47]   Supercontinuum generation in silicon photonics platforms [J].
Lafforgue, Christian ;
Montesinos-Ballester, Miguel ;
Thi-Thuy-Duong Dinh ;
Le Roux, Xavier ;
Cassan, Eric ;
Marris-Morini, Delphine ;
Alonso-Ramos, Carlos ;
Vivien, Laurent .
PHOTONICS RESEARCH, 2022, 10 (03) :A43-A56
[48]   Analysis of photonic crystal fiber with silicon core for efficient supercontinuum generation [J].
Sakr, Hesham ;
Hussein, Rasha A. ;
Hameed, Mohamed Farhat O. ;
Obayya, S. S. A. .
OPTIK, 2019, 182 :848-857
[49]   Modulational-instability-induced supercontinuum generation with saturable nonlinear response [J].
Raja, R. Vasantha Jayakantha ;
Porsezian, K. ;
Nithyanandan, K. .
PHYSICAL REVIEW A, 2010, 82 (01)
[50]   Design of solid core photonic bandgap fibers for visible supercontinuum generation [J].
Pureur, Vincent ;
Dudley, John M. .
OPTICS COMMUNICATIONS, 2011, 284 (06) :1661-1668