Static gain saturation model of quantum-dot semiconductor optical amplifiers

被引:63
作者
Kim, Jungho [1 ]
Laemmlin, Matthias [1 ]
Meuer, Christian [1 ]
Bimberg, Dieter [1 ]
Eisenstein, Gadi [2 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
gain saturation; quantum dot (QD); semiconductor optical amplifiers (SOA);
D O I
10.1109/JQE.2008.922325
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We theoretically investigate the gain saturation behavior of a quantum-dot (QD) semiconductor optical amplifier (SOA), focusing on spectral hole burning (SHB) and total carrier density depletion (TCDD). In the static gain model for a QD-SOA, SHB is modeled by the quantum-mechanical density matrix theory and TCDD is described by the shift of the global quasi-Fermi level. We calculate the gain saturation spectra of a QD-SOA at various injection current densities and qualitatively explain how high-speed cross-gain saturation responses can be affected by injection current density. From the quantum-mechanical description for SHB, we show that the optical power for 3-dB gain saturation due to SHB is proportional to the square of the homogeneous linewidth and the functionality of a QD-SOA can be changed by controlling device parameters such as doping density and barrier potential to adjust the homogeneous linewidth.
引用
收藏
页码:658 / 666
页数:9
相关论文
共 30 条
[2]   SELF-PHASE MODULATION AND SPECTRAL BROADENING OF OPTICAL PULSES IN SEMICONDUCTOR-LASER AMPLIFIERS [J].
AGRAWAL, GP ;
OLSSON, NA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (11) :2297-2306
[4]   OPTICAL GAIN AND GAIN SUPPRESSION OF QUANTUM-WELL LASERS WITH VALENCE BAND MIXING [J].
AHN, D ;
CHUANG, SL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (01) :13-24
[5]   An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots [J].
Akiyama, T ;
Ekawa, M ;
Sugawara, M ;
Kawaguchi, K ;
Sudo, H ;
Kuramata, A ;
Ebe, H ;
Arakawa, Y .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (08) :1614-1616
[6]   Pattern-effect-free semiconductor optical amplifier achieved using quantum dots [J].
Akiyama, T ;
Hatori, N ;
Nakata, Y ;
Ebe, H ;
Sugawara, M .
ELECTRONICS LETTERS, 2002, 38 (19) :1139-1140
[7]   Cross-gain modulation in inhomogeneously broadened gain spectra of InP-Based 1550 nm quantum dash optical amplifiers: Small-signal bandwidth dependence on wavelength detuning [J].
Alizon, R ;
Bilenca, A ;
Dery, H ;
Mikhelashvili, V ;
Eisenstein, G ;
Schwertberger, R ;
Gold, D ;
Reithmaier, JP ;
Forchel, A .
APPLIED PHYSICS LETTERS, 2003, 82 (26) :4660-4662
[8]   DENSITY-MATRIX THEORY OF SEMICONDUCTOR-LASERS WITH RELAXATION BROADENING MODEL - GAIN AND GAIN-SUPPRESSION IN SEMICONDUCTOR-LASERS [J].
ASADA, M ;
SUEMATSU, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1985, 21 (05) :434-442
[9]   Saturation and noise properties of quantum-dot optical amplifiers [J].
Berg, TW ;
Mork, J .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (11) :1527-1539
[10]   High speed nanophotonic devices based on quantum dots [J].
Bimberg, D. ;
Fiol, G. ;
Kuntz, M. ;
Meuer, C. ;
Laemmlin, M. ;
Ledentsov, N. N. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (14) :3523-3532