Coagulation dynamics under environmental noise: Scaling limit to SPDE

被引:5
作者
Flandoli, Franco [1 ]
Huang, Ruojun [1 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, PI-56126 Pisa, Italy
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2022年 / 19卷 / 02期
关键词
Scaling limits; coagulation dynamics; stochastic PDE; environmental noise; interacting diffusions; rainfall formation; ORNSTEIN-UHLENBECK; KINETIC LIMIT; PROPAGATION; PARTICLES; SYSTEM; EQUATIONS; CHAOS; CONVERGENCE;
D O I
10.30757/ALEA.v19-51
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that a system of locally interacting diffusions carrying discrete masses, subject to an environmental noise and undergoing mass coagulation, converges to a system of Stochastic Partial Differential Equations (SPDEs) with Smoluchowski-type nonlinearity. Existence, uniqueness and regularity of the SPDEs are also proven.
引用
收藏
页码:1241 / 1292
页数:52
相关论文
共 47 条
[1]  
Agresti A, 2023, Arxiv, DOI arXiv:2106.01274
[2]  
[Anonymous], 1979, Current problems in mathematics
[3]  
[Anonymous], 1996, Lectures on elliptic and parabolic equations in Holder spaces
[4]  
[Anonymous], 1916, Physik Zeit.
[5]  
[Anonymous], 1986, MARKOV PROCESSES CHA
[6]  
[Anonymous], 1975, Equations aux derivees partielles stochastiques non lineaires monotones
[7]   Can We Understand Clouds Without Turbulence? [J].
Bodenschatz, E. ;
Malinowski, S. P. ;
Shaw, R. A. ;
Stratmann, F. .
SCIENCE, 2010, 327 (5968) :970-971
[8]   PROPAGATION OF CHAOS FOR INTERACTING PARTICLES SUBJECT TO ENVIRONMENTAL NOISE [J].
Coghi, Michele ;
Flandoli, Franco .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1407-1442
[9]  
Da Prato G., 1992, Stochastic equations in infinite dimensions, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223, DOI 10.1017/CBO9780511666223]
[10]   Differential equation approximations for Markov chains [J].
Darling, R. W. R. ;
Norris, J. R. .
PROBABILITY SURVEYS, 2008, 5 :37-79