Non-equilibrium molecular dynamics study of nanoscale thermal contact resistance

被引:10
作者
Xiang, Heng [1 ]
Jiang, Pei-Xue [1 ]
LIu, Qi-Xin [1 ]
机构
[1] Tsinghua Univ, Dept Thermal Engn, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal contact resistance; molecular dynamics; micro contact; near field radiation;
D O I
10.1080/08927020802101700
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfaces play an important role in microscale and nanoscale heat transfer processes with molecular dynamics ( MD) simulations often used to study these interfacial phenomena. In this study, two models were used to simulate thermal conduction across micro contact points and the thermal contact resistance using non- equilibrium molecular dynamics simulations with consideration of the near field radiation. When the ratio of the length of the micro contact to the length of the conduction region is less than 0.125, the influence of the near field radiation should be considered; but when the ratio is larger than 0.2, it can be neglected. When the computational domain sizes are 8.50 x 10.62 x 8.50 nm and 10.62 x 10.62 x 10.62 nm, the MD results show that the thermal contact resistance exponentially increases with decreasing area of the micro contact point and increases with increasing micro contact layer thickness. The MD thermal contact resistances in nanoscale are much larger than that of the classical thermal analysis since the material thermal conductivity reduction is ignored in the classical model. The results also show that material defects increase the thermal resistance.
引用
收藏
页码:679 / 687
页数:9
相关论文
共 19 条
[1]   Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study [J].
Abramson, AR ;
Tien, CL ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (05) :963-970
[2]  
Allen M. P., 2009, Computer Simulation of Liquids
[3]   Review of thermal joint resistance models for nonconforming rough surfaces [J].
Bahrami, M. ;
Culham, J. R. ;
Yananovich, M. M. ;
Schneider, G. E. .
APPLIED MECHANICS REVIEWS, 2006, 59 (1-6) :1-12
[4]   Finite size effects in determination of thermal conductivities: Comparing molecular dynamics results with simple models [J].
Chantrenne, P ;
Barrat, JL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (04) :577-585
[5]   Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires [J].
Chen, YF ;
Li, DY ;
Yang, JK ;
Wu, YH ;
Lukes, JR ;
Majumdar, A .
PHYSICA B-CONDENSED MATTER, 2004, 349 (1-4) :270-280
[6]   Thermal boundary resistance at an epitaxially perfect interface of thin films [J].
Choi, SH ;
Maruyama, S .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (06) :547-558
[7]  
HAN MH, 2003, 1 INT C MICR MIN ROC
[8]   A molecular dynamics study of interfacial thermal transport in heterogeneous systems [J].
Hegedus, Phil J. ;
Abramson, Alexis R. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (25-26) :4921-4931
[9]  
KHALATNIKOV IM, 1973, SOV PHYS JETP, V36, P361
[10]   Interface structure influence on thermal resistance across double-layered nanofilms [J].
Liang, XG ;
Sun, L .
MICROSCALE THERMOPHYSICAL ENGINEERING, 2005, 9 (03) :295-304