Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects

被引:137
作者
Gan, Yanbiao [1 ,2 ]
Xu, Aiguo [1 ,3 ,4 ]
Zhang, Guangcai [1 ,4 ]
Succi, Sauro [5 ]
机构
[1] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing, Peoples R China
[2] North China Inst Aerosp Engn, Langfang, Peoples R China
[3] Peking Univ, Coll Engn, Ctr Appl Phys & Technol, MOE Key Ctr High Energy Dens Phys Simulat, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100080, Peoples R China
[5] Inst Applicaz Calcolo, Rome, Italy
基金
中国国家自然科学基金;
关键词
LATTICE-BOLTZMANN; PHASE-SEPARATION; SIMULATION; COALESCENCE; EQUATION; FLUID; STATE;
D O I
10.1039/c5sm01125f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A discrete Boltzmann model (DBM) is developed to investigate the hydrodynamic and thermodynamic non-equilibrium (TNE) effects in phase separation processes. The interparticle force drives changes and the gradient force, induced by gradients of macroscopic quantities, opposes them. In this paper, we investigate the interplay between them by providing a detailed inspection of various non-equilibrium observables. Based on the TNE features, we define TNE strength which roughly estimates the deviation amplitude from the thermodynamic equilibrium. The time evolution of the TNE intensity provides a convenient and efficient physical criterion to discriminate the stages of the spinodal decomposition and domain growth. Via the DBM simulation and this criterion, we quantitatively study the effects of latent heat and surface tension on phase separation. It is found that the TNE strength attains its maximum at the end of the spinodal decomposition stage, and it decreases when the latent heat increases from zero. The surface tension effects are threefold, prolong the duration of the spinodal decomposition stage, decrease the maximum TNE intensity, and accelerate the speed of the domain growth stage.
引用
收藏
页码:5336 / 5345
页数:10
相关论文
共 52 条
[1]   Lattice-Boltzmann simulation of coalescence-driven island coarsening [J].
Basagaoglu, H ;
Green, CT ;
Meakin, P ;
McCoy, BJ .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (16) :7987-7995
[2]   Phase-Field Model of Long-Time Glasslike Relaxation in Binary Fluid Mixtures [J].
Benzi, R. ;
Sbragaglia, M. ;
Bernaschi, M. ;
Succi, S. .
PHYSICAL REVIEW LETTERS, 2011, 106 (16)
[3]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[4]   Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases [J].
Cates, M. E. ;
Henrich, O. ;
Marenduzzo, D. ;
Stratford, K. .
SOFT MATTER, 2009, 5 (20) :3791-3800
[5]   Pattern formation in liquid-vapor systems under periodic potential and shear [J].
Coclite, A. ;
Gonnella, G. ;
Lamura, A. .
PHYSICAL REVIEW E, 2014, 89 (06)
[6]   Mesoscopic simulation of non-ideal fluids with self-tuning of the equation of state [J].
Colosqui, Carlos E. ;
Falcucci, Giacomo ;
Ubertini, Stefano ;
Succi, Sauro .
SOFT MATTER, 2012, 8 (14) :3798-3809
[7]   Two-scale competition in phase separation with shear [J].
Corberi, F ;
Gonnella, G ;
Lamura, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4057-4060
[8]   Coalescence of liquid drops [J].
Eggers, J ;
Lister, JR ;
Stone, HA .
JOURNAL OF FLUID MECHANICS, 1999, 401 :293-310
[9]   Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials [J].
Falcucci, Giacomo ;
Ubertini, Stefano ;
Succi, Sauro .
SOFT MATTER, 2010, 6 (18) :4357-4365
[10]   Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors [J].
Gan, Yanbiao ;
Xu, Aiguo ;
Zhang, Guangcai ;
Yang, Yang .
EPL, 2013, 103 (02)