Equilibrium of two populations subject to chemotaxis

被引:28
作者
Fasano, A [1 ]
Mancini, A [1 ]
Primicerio, M [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
chemotaxis; bifurcation;
D O I
10.1142/S0218202504003337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of four partial differential equations modelling the dynamics of two populations interacting via chemical agents. Classes of nontrivial equilibrium solutions are studied and a rescaled total biomass is shown to play the role of a bifurcation parameter.
引用
收藏
页码:503 / 533
页数:31
相关论文
共 35 条
[1]  
Biler P., 1999, J. Adv. Math. Sci. Appl., V9, P347
[2]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[3]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[4]  
Diaz J. I., 1995, Adv. Math. Sci. Appl, V5, P659
[5]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[6]  
Herrero M. A., 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V24, P633
[7]   Singularity patterns in a chemotaxis model [J].
Herrero, MA ;
Velazquez, JJL .
MATHEMATISCHE ANNALEN, 1996, 306 (03) :583-623
[8]   Chemotactic collapse for the Keller-Segel model [J].
Herrero, MA ;
Velazquez, JJL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :177-194
[9]   Self-similar blow-up for a reaction-diffusion system [J].
Herrero, MA ;
Medina, E ;
Velazquez, JJL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :99-119
[10]  
Herrero MA, 2000, APPLIED AND INDUSTRIAL MATHEMATICS, VENICE-2, 1998, P89