Revealing Biological Modules via Graph Summarization

被引:43
作者
Navlakha, Saket [1 ,2 ]
Schatz, Michael C. [1 ,2 ]
Kingsford, Carl [1 ,2 ,3 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
function prediction; graph summarization; module detection; protein interaction networks; PROTEIN-PROTEIN INTERACTIONS; COMMUNITY STRUCTURE; INTERACTION NETWORK; FUNCTIONAL MODULES; MODULARITY; COMPLEXES; ORGANIZATION; PREDICTION; FRAMEWORK; TOPOLOGY;
D O I
10.1089/cmb.2008.11TT
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The division of a protein interaction network into biologically meaningful modules can aid with automated detection of protein complexes and prediction of biological processes and can uncover the global organization of the cell. We propose the use of a graph summarization (GS) technique, based on graph compression, to cluster protein interaction graphs into biologically relevant modules. The method is motivated by defining a biological module as a set of proteins that have similar sets of interaction partners. We show this definition, put into practice by a GS algorithm, reveals modules that are more biologically enriched than those found by other methods. We also apply GS to predict complex memberships, biological processes, and co-complexed pairs and show that in most settings GS is preferable over existing methods of protein interaction graph clustering.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 45 条
[1]  
[Anonymous], 2008, P ACM INT C MAN DAT, DOI DOI 10.1145/1376616.1376661
[2]  
[Anonymous], 2007, P 16 INT C WORLD WID
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[5]   Evaluation of clustering algorithms for protein-protein interaction networks [J].
Brohee, Sylvain ;
van Helden, Jacques .
BMC BIOINFORMATICS, 2006, 7 (1)
[6]   Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network [J].
Christine Brun ;
François Chevenet ;
David Martin ;
Jérôme Wojcik ;
Alain Guénoche ;
Bernard Jacq .
Genome Biology, 5 (1)
[7]   Topological structure analysis of the protein-protein interaction network in budding yeast [J].
Bu, DB ;
Zhao, Y ;
Cai, L ;
Xue, H ;
Zhu, XP ;
Lu, HC ;
Zhang, JF ;
Sun, SW ;
Ling, LJ ;
Zhang, N ;
Li, GJ ;
Chen, RS .
NUCLEIC ACIDS RESEARCH, 2003, 31 (09) :2443-2450
[8]   Genetic and physical maps of Saccharomyces cerevisiae [J].
Cherry, JM ;
Ball, C ;
Weng, S ;
Juvik, G ;
Schmidt, R ;
Adler, C ;
Dunn, B ;
Dwight, S ;
Riles, L ;
Mortimer, RK ;
Botstein, D .
NATURE, 1997, 387 (6632) :67-73
[9]  
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
[10]   An efficient algorithm for large-scale detection of protein families [J].
Enright, AJ ;
Van Dongen, S ;
Ouzounis, CA .
NUCLEIC ACIDS RESEARCH, 2002, 30 (07) :1575-1584