Diophantine equations and Bernoulli polynomials

被引:46
作者
Bilu, YF [1 ]
Brindza, B
Kirschenhofer, P
Pintér, A
Tichy, RF
Schinzel, A
机构
[1] Univ Bordeaux 1, 351 Cours Liberat,A2X, F-33405 Talence, France
[2] Univ Debrecen, Dept Math, H-4010 Debrecen, Hungary
[3] Univ Leoben, A-8700 Leoben, Austria
[4] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
关键词
Diophantine equations; Bernoulli polynomials; power sums; products of consecutive integers; indecomposable polynomials;
D O I
10.1023/A:1014972217217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given m, n greater than or equal to 2, we prove that, for sufficiently large y, the sum 1(n) +...+ y(n) is not a product of m consecutive integers. We also prove that for m not equal n we have 1(m) +...+ x(m) not equal 1(n) +...+ y(n), provided x, y are sufficiently large. Among other auxiliary facts, we show that Bernoulli polynomials of odd index are indecomposable, and those of even index are 'almost' indecomposable, a result of independent interest.
引用
收藏
页码:173 / 188
页数:16
相关论文
共 25 条
[1]   BOUNDS FOR SOLUTIONS OF HYPERELLIPTIC EQUATION [J].
BAKER, A .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 :439-&
[2]  
BAKER A, 1970, PROC CAMB PHILOS S-M, V67, P595
[3]   Irreducibility of polynomials and arithmetic progressions with equal products of terms [J].
Beukers, F ;
Shorey, TN ;
Tijdeman, R .
NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, :11-26
[4]  
BILU Y. F., 2000, PERIOD MATH HUNG, V40, P229
[5]   The Diophantine equation f(x)=g(y) [J].
Bilu, YF ;
Tichy, RF .
ACTA ARITHMETICA, 2000, 95 (03) :261-288
[6]  
BRILLHAR.J, 1969, J REINE ANGEW MATH, V234, P45
[7]  
Brindza B, 1997, ACTA ARITH, V82, P303
[8]  
Brindza B, 1996, ACTA ARITH, V77, P97
[9]   ON SOME GENERALIZATIONS OF THE DIOPHANTINE EQUATION [J].
BRINDZA, B .
ACTA ARITHMETICA, 1984, 44 (02) :99-107
[10]  
BRINDZA B, 1990, C MATH SOC JANOS BOL, V51, P595