An extension of Dragilev's theorem for the existence of periodic solutions of the Lienard equation

被引:14
作者
Cioni, Martina [1 ]
Villari, Gabriele [1 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, I-50137 Florence, Italy
关键词
Lienard equation; Limit cycles; Dragilev's theorem; LIMIT-CYCLES;
D O I
10.1016/j.na.2015.06.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of the existence of periodic solution for the Lienard equation is investigated, and a result which improves the classical Dragilev's theorem is presented, together with a corollary in which there are no assumptions on the function g(x), and hence on G(x), besides the standard sign condition. In the final part of the paper constructive examples with several limit cycles are provided. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 27 条
[1]  
ALBRECHT F, 1991, LECT NOTES MATH, V1475, P41
[2]  
Albrecht F., 1993, P INT M ORD DIFF EQ
[3]  
[Anonymous], 1957, DIFFERENTIAL EQUATIO
[4]  
BUCCI F, 1989, B UNIONE MAT ITAL, V3B, P155
[5]  
BUCCI F, 1990, B UNIONE MAT ITAL, V4B, P265
[6]  
Dragilev A.A., 1952, PRIKL MAT MEH, V12, P85
[7]   ON THE NON-UNIQUENESS OF PERIODIC SOLUTIONS FOR AN ASYMMETRIC LIENARD EQUATION [J].
DUFF, GFD ;
LEVINSON, N .
QUARTERLY OF APPLIED MATHEMATICS, 1952, 10 (01) :86-88
[8]   More limit cycles than expected in Lienard equations [J].
Dumortier, Freddy ;
Panazzolo, Daniel ;
Roussarie, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) :1895-1904
[9]  
FILIPPOV AF, 1952, MAT SBORNIK, V30, P171
[10]   BOUNDARIES FOR THE LIMIT CYCLE OF VANDERPOL EQUATION [J].
GOMORY, R ;
RICHMOND, DE .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (02) :205-209