Quantitative estimates for sampling type operators with respect to the Jordan variation

被引:6
作者
Angeloni, Laura [1 ]
Costarelli, Danilo [1 ]
Vinti, Gianluca [1 ]
机构
[1] Univ Perugia, Dept Math & Comp Sci, Via Vanvitelli 1, I-06123 Perugia, Italy
关键词
Sampling Kantorovich series; generalized sampling series; Jordan's variation; modulus of smoothness; averaged-type kernel; singular integral; INTEGRAL-OPERATORS; SPLINE FUNCTIONS; APPROXIMATION; CONVERGENCE;
D O I
10.4171/RLM/890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the order of approximation with respect to the Jordan variation for the generalized and the Kantorovich sampling series, based upon averaged type kernels. In particular, we establish some quantitative estimates for the above operators. For the latter purpose, we introduce a suitable modulus of smoothness in the space of absolutely continuous functions on the whole real line.
引用
收藏
页码:269 / 284
页数:16
相关论文
共 48 条
[1]   On the variation detracting property of operators of Balazs and Szabados [J].
Abel, U. ;
Agratini, O. .
ACTA MATHEMATICA HUNGARICA, 2016, 150 (02) :383-395
[2]  
Agratini O., 2001, MISKOLC MATH NOTES, V2, P3, DOI [10.18514/MMN.2001.31, DOI 10.18514/MMN.2001.31]
[3]   A class of spline functions for landmark-based image registration [J].
Allasia, G. ;
Cavoretto, R. ;
De Rossi, A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) :923-934
[4]   Lobachevsky spline functions and interpolation to scattered data [J].
Allasia, Giampietro ;
Cavoretto, Roberto ;
De Rossi, Alessandra .
COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01) :71-87
[5]   Equivalent definitions of BV space and of total variation on metric measure spaces [J].
Ambrosio, Luigi ;
Di Marino, Simone .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) :4150-4188
[6]   Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type [J].
Angeloni, Laura ;
Vinti, Gianluca .
RESULTS IN MATHEMATICS, 2006, 49 (1-2) :1-23
[7]   A Characterization of the Absolute Continuity in Terms of Convergence in Variation for the Sampling Kantorovich Operators [J].
Angeloni, Laura ;
Costarelli, Danilo ;
Vinti, Gianluca .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)
[8]   A CHARACTERIZATION OF THE CONVERGENCE IN VARIATION FOR THE GENERALIZED SAMPLING SERIES [J].
Angeloni, Laura ;
Costarelli, Danilo ;
Vinti, Gianluca .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 :755-767
[9]   Convergence in variation and a characterization of the absolute continuity [J].
Angeloni, Laura ;
Vinti, Gianluca .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (10) :829-844
[10]   Convergence and rate of approximation in BVφ (R+N) for a class of Mellin integral operators [J].
Angeloni, Laura ;
Vinti, Gianluca .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2014, 25 (03) :217-232