MINIMIZATION PRINCIPLES FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM II: COMPUTATION

被引:48
作者
Bai, Zhaojun [1 ,2 ]
Li, Ren-Cang [3 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
eigenvalue; eigenvector; minimization principle; random phase approximation; quantum linear response; RANDOM-PHASE-APPROXIMATION; EQUATION; REDUCTION; ALGORITHM; STATES;
D O I
10.1137/110838972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Part I of this paper we presented minimization principles and related theoretical results for the linear response eigenvalue problem. Here we develop best approximations for the few smallest eigenvalues with the positive sign via a structure-preserving subspace projection. Then we present four-dimensional subspace search conjugate gradient-like algorithms for simultaneously computing these eigenvalues and their associated eigenvectors. Finally, we present numerical examples to illustrate convergence behaviors of the proposed methods with and without preconditioning.
引用
收藏
页码:392 / 416
页数:25
相关论文
共 49 条
[1]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[2]  
[Anonymous], 1972, QUANTUM MECH MANY BO
[3]  
[Anonymous], 1965, The algebraic eigenvalue problem
[4]  
[Anonymous], 1997, Applied numerical linear algebra
[5]   MINIMIZATION PRINCIPLES FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM I: THEORY [J].
Bai, Zhaojun ;
Li, Ren-Cang .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (04) :1075-1100
[6]   An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem [J].
Benner, P ;
Fassbender, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 :75-111
[7]   A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
NUMERISCHE MATHEMATIK, 1998, 78 (03) :329-358
[8]   A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process [J].
Benner, Peter ;
Fassbender, Heike ;
Stoll, Martin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (03) :578-600
[9]   A COLLECTIVE DESCRIPTION OF ELECTRON INTERACTIONS .3. COULOMB INTERACTIONS IN A DEGENERATE ELECTRON GAS [J].
BOHM, D ;
PINES, D .
PHYSICAL REVIEW, 1953, 92 (03) :609-625
[10]   NEW ITERATIVE METHODS FOR SOLUTION OF EIGENPROBLEM [J].
BRADBURY, WW ;
FLETCHER, R .
NUMERISCHE MATHEMATIK, 1966, 9 (03) :259-&