Quantification of Smoothing Requirement for 3D Optic Flow Calculation of Volumetric Images

被引:6
作者
Bab-Hadiashar, Alireza [1 ]
Tennakoon, Ruwan B. [2 ]
de Bruijne, Marleen [3 ,4 ,5 ]
机构
[1] RMIT Univ, Sch Aerosp Mech & Mfg, Melbourne, Vic 3001, Australia
[2] Swinburne Univ Technol, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia
[3] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[4] Erasmus MC Univ Med Ctr, Dept Radiol, Biomed Imaging Grp, NL-12306 Rotterdam, Netherlands
[5] Erasmus MC Univ Med Ctr, Dept Med Informat, Biomed Imaging Grp, NL-12306 Rotterdam, Netherlands
基金
澳大利亚研究理事会;
关键词
3D optic flow; 4-D CT; Gaussian smoothing; volumetric images; MOTION ESTIMATION; REAL-TIME; REGISTRATION; COMPUTATION; SEGMENTATION; VELOCITY; FLIRT;
D O I
10.1109/TIP.2013.2246174
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called "just enough" smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D dynamic scans. To demonstrate the effect of "just enough" smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences with ground truth.
引用
收藏
页码:2128 / 2137
页数:10
相关论文
共 34 条
[1]   Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI [J].
Andreopoulos, Alexander ;
Tsotsos, John K. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (03) :335-357
[2]  
[Anonymous], 1981, P 7 INT JOINT C ART
[3]   Robust segmentation of visual data using ranked unbiased scale estimate [J].
Bab-Hadiashar, A ;
Suter, D .
ROBOTICA, 1999, 17 :649-660
[4]   Robust optic flow computation [J].
Bab-Hadiashar, A ;
Suter, D .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (01) :59-77
[5]   A Database and Evaluation Methodology for Optical Flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) :1-31
[6]  
Barron J., 2005, Tutorial: Computing 2D and 3D optical flow
[7]  
Barron J. L., 1992, Proceedings. 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.92CH3168-2), P236, DOI 10.1109/CVPR.1992.223269
[8]   4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis [J].
Boldea, Vlad ;
Sharp, Gregory C. ;
Jiang, Steve B. ;
Sarrut, David .
MEDICAL PHYSICS, 2008, 35 (03) :1008-1018
[9]  
Bruhn A, 2005, LECT NOTES COMPUT SC, V3459, P279
[10]   Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods [J].
Bruhn A. ;
Weickert J. ;
Schnörr C. .
International Journal of Computer Vision, 2005, 61 (3) :1-21