Finite element solution of new displacement/pres sure poroelastic models in acoustics

被引:12
作者
Bermúdez, A [1 ]
Ferrín, JL [1 ]
Prieto, A [1 ]
机构
[1] Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15782, Spain
关键词
elastic frame; porous medium; finite element method;
D O I
10.1016/j.cma.2004.07.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with acoustical behavior of porous materials having an elastic solid frame. Firstly an overview to poroelastic models is presented, and then we focus our attention on non-dissipative poroelastic materials with open pores. Assuming periodic structure we compute the coefficients in the model by using homogenization techniques which require solving boundary-value problems in the elementary cell. Next we propose a finite element method in order to compute the response to a harmonic excitation of a three-dimensional enclosure containing a free fluid and a poroelastic material. The finite element used for the fluid is the lowest order face element introduced by Raviart and Thomas that eliminates the spurious modes whereas, for displacements in porous medium, the "MINI element" is used in order to achieve stability of the method. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1914 / 1932
页数:19
相关论文
共 23 条
[1]  
Allard J.F., 1993, Propagation of sound in porous media, DOI [10.1002/9780470747339, DOI 10.1002/9780470747339]
[2]   NEW EMPIRICAL EQUATIONS FOR SOUND-PROPAGATION IN RIGID FRAME FIBROUS MATERIALS [J].
ALLARD, JF ;
CHAMPOUX, Y .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (06) :3346-3353
[3]  
Arnold D. N., 1984, Calcolo, V21, P337, DOI 10.1007/BF02576171
[4]   A mixed displacement-pressure formulation for poroelastic materials [J].
Atalla, N ;
Panneton, R ;
Debergue, P .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (03) :1444-1452
[6]   A finite element solution of acoustic propagation in rigid porous media [J].
Bermúdez, A ;
Ferrín, JL ;
Prieto, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (10) :1295-1314
[7]   FINITE-ELEMENT COMPUTATION OF THE VIBRATION MODES OF A FLUID-SOLID SYSTEM [J].
BERMUDEZ, A ;
RODRIGUEZ, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 119 (3-4) :355-370
[8]  
Biot M., 1957, J APPL MECH, V24, P594
[10]  
Clopeau T, 2002, MULTISCALE PROBLEMS IN SCIENCE AND TECHNOLOGY, P151