Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrx Bilayers Across a Wide Concentration Range

被引:49
作者
Cramer, Joel [1 ,2 ]
Seifer, Tom [3 ]
Kronenberg, Alexander [1 ]
Fuhrmann, Felix [1 ]
Jakob, Gerhard [1 ,2 ]
Jourdan, Martin [1 ,2 ]
Kampfrath, Tobias [3 ,4 ]
Klaeui, Mathias [1 ,2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] Grad Sch Excellence Mat Sci Mainz, D-55128 Mainz, Germany
[3] Max Planck Gesell, Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany
[4] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
Spin Hall effect; spin Seebeck effect; ultrafast spin currents; alloy; terahertz emission; TEMPERATURE;
D O I
10.1021/acs.nanolett.7b04538
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We measure the inverse spin Hall effect of Cu1-xIrx thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 <= x <= 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu1-xIrx. The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.
引用
收藏
页码:1064 / 1069
页数:6
相关论文
共 32 条
[1]   Theory of the spin Seebeck effect [J].
Adachi, Hiroto ;
Uchida, Ken-ichi ;
Saitoh, Eiji ;
Maekawa, Sadamichi .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (03)
[2]   Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect [J].
Agrawal, M. ;
Vasyuchka, V. I. ;
Serga, A. A. ;
Kirihara, A. ;
Pirro, P. ;
Langner, T. ;
Jungfleisch, M. B. ;
Chumak, A. V. ;
Papaioannou, E. Th. ;
Hillebrands, B. .
PHYSICAL REVIEW B, 2014, 89 (22)
[3]   Inverse spin-Hall effect induced by spin pumping in metallic system [J].
Ando, K. ;
Takahashi, S. ;
Ieda, J. ;
Kajiwara, Y. ;
Nakayama, H. ;
Yoshino, T. ;
Harii, K. ;
Fujikawa, Y. ;
Matsuo, M. ;
Maekawa, S. ;
Saitoh, E. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[4]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
[5]   Electron mean free path in elemental metals [J].
Gall, Daniel .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (08)
[6]   Intrinsic spin Hall effect in platinum: First-principles calculations [J].
Guo, G. Y. ;
Murakami, S. ;
Chen, T. -W. ;
Nagaosa, N. .
PHYSICAL REVIEW LETTERS, 2008, 100 (09)
[7]  
Kampfrath T, 2013, NAT NANOTECHNOL, V8, P256, DOI [10.1038/nnano.2013.43, 10.1038/NNANO.2013.43]
[8]   Length Scale of the Spin Seebeck Effect [J].
Kehlberger, Andreas ;
Ritzmann, Ulrike ;
Hinzke, Denise ;
Guo, Er-Jia ;
Cramer, Joel ;
Jakob, Gerhard ;
Onbasli, Mehmet C. ;
Kim, Dong Hun ;
Ross, Caroline A. ;
Jungfleisch, Matthias B. ;
Hillebrands, Burkard ;
Nowak, Ulrich ;
Klaeui, Mathias .
PHYSICAL REVIEW LETTERS, 2015, 115 (09)
[9]   Picosecond Spin Seebeck Effect [J].
Kimling, Johannes ;
Choi, Gyung-Min ;
Brangham, Jack T. ;
Matalla-Wagner, Tristan ;
Huebner, Torsten ;
Kuschel, Timo ;
Yang, Fengyuan ;
Cahill, David G. .
PHYSICAL REVIEW LETTERS, 2017, 118 (05)
[10]   Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory [J].
Leitenstorfer, A ;
Hunsche, S ;
Shah, J ;
Nuss, MC ;
Knox, WH .
APPLIED PHYSICS LETTERS, 1999, 74 (11) :1516-1518