Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification

被引:6
|
作者
Ramadan, Ahmed [1 ]
Boss, Connor [2 ]
Choi, Jongeun [3 ]
Reeves, N. Peter [4 ,5 ]
Cholewicki, Jacek [6 ]
Popovich, John M., Jr. [5 ]
Radcliffe, Clark J. [1 ]
机构
[1] Michigan State Univ, MSU Ctr Orthoped Res MSUCOR, Dept Mech Engn, 428 S Shaw Ln, E Lansing, MI 48824 USA
[2] Michigan State Univ, MSU Ctr Orthoped Res MSUCOR, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Yonsei Univ, Sch Mech Engn, Seoul 03722, South Korea
[4] Sumaq Life LLC, E Lansing, MI 48823 USA
[5] MSU Ctr Orthoped Res MSUCOR, Dept Osteopath Surg Special, E Lansing, MI 48824 USA
[6] Michigan State Univ, MSU Ctr Orthoped Res MSUCOR, Dept Osteopath Surg Specialties, E Lansing, MI 48824 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2018年 / 140卷 / 07期
基金
美国国家卫生研究院;
关键词
parameter estimation; Fisher information; LASSO; sensitive parameters; head position tracking; REGRESSION SHRINKAGE; EXPERIMENT DESIGN; HEAD; TRACKING;
D O I
10.1115/1.4039677
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Novel approaches for parameter estimation of local linear models for dynamical system identification
    Guilherme A. Barreto
    Luís Gustavo M. Souza
    Applied Intelligence, 2016, 44 : 149 - 165
  • [2] Novel approaches for parameter estimation of local linear models for dynamical system identification
    Barreto, Guilherme A.
    Souza, Luis Gustavo M.
    APPLIED INTELLIGENCE, 2016, 44 (01) : 149 - 165
  • [3] System Identification of Nonlinear Dynamical Models: Application to Wastewater Treatment Plant
    Gasperin, Matej
    Vrecko, Darko
    Juricic, Dani
    2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 695 - 700
  • [4] Population-Based Parameter Identification for Dynamical Models of Biological Networks with an Application to Saccharomyces cerevisiae
    Weglarz-Tomczak, Ewelina
    Tomczak, Jakub M.
    Eiben, Agoston E.
    Brul, Stanley
    PROCESSES, 2021, 9 (01) : 1 - 14
  • [5] Parameter identification in dynamical models of anaerobic waste water treatment
    Müller, TG
    Noykova, N
    Gyllenberg, M
    Timmer, J
    MATHEMATICAL BIOSCIENCES, 2002, 177 : 147 - 160
  • [6] IDENTIFICATION AND APPLICATION OF BOUNDED-PARAMETER MODELS
    NORTON, JP
    AUTOMATICA, 1987, 23 (04) : 497 - 507
  • [7] Recursive parameter identification of the dynamical models for bilinear state space systems
    Zhang, Xiao
    Ding, Feng
    Alsaadi, Fuad E.
    Hayat, Tasawar
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2415 - 2429
  • [8] Recursive parameter identification of the dynamical models for bilinear state space systems
    Xiao Zhang
    Feng Ding
    Fuad E. Alsaadi
    Tasawar Hayat
    Nonlinear Dynamics, 2017, 89 : 2415 - 2429
  • [9] Parameter Identification and Synchronization of Dynamical System by Introducing an Auxiliary Subsystem
    Haipeng Peng
    Lixiang Li
    Fei Sun
    Yixian Yang
    Xiaowen Li
    Advances in Difference Equations, 2010
  • [10] Parameter Identification and Synchronization of Dynamical System by Introducing an Auxiliary Subsystem
    Peng, Haipeng
    Li, Lixiang
    Sun, Fei
    Yang, Yixian
    Li, Xiaowen
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,