A NONLINEAR ELIMINATION PRECONDITIONED INEXACT NEWTON ALGORITHM

被引:6
作者
Liu, Lulu [1 ]
Hwang, Feng-Nan [2 ]
Luo, Li [3 ]
Cai, Xiao-Chuan [3 ]
Keyes, David E. [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Natl Cent Univ, Dept Math, Taoyuan 320317, Taiwan
[3] Univ Macau, Fac Sci & Technol, Taipa, Macau, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
nonlinear elimination; inexact Newton method; domain decomposition; nonlinear equations; full potential equation; DOMAIN DECOMPOSITION METHODS; FLOW PROBLEMS; FETI-DP; CONVERGENCE; STRATEGIES;
D O I
10.1137/21M1416138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear elimination preconditioned inexact Newton (NEPIN) algorithm is proposed for problems with localized strong nonlinearities. Due to unbalanced nonlinearities ("nonlinear stiffness""), the traditional inexact Newton method often exhibits a long plateau in the norm of the nonlinear residual or even fails to converge. NEPIN implicitly removes the components causing trouble for the global convergence through a correction based on nonlinear elimination within a subspace that provides a modified direction for the global Newton iteration. Numerical experiments show that NEPIN can be more robust than global inexact Newton algorithms and maintain fast convergence even for challenging problems, such as full potential transonic flows. NEPIN complements several previously studied nonlinear preconditioners with which it compares favorably experimentally on a classic shocked duct flow problem considered herein. NEPIN is shown to be fairly insensitive to mesh resolution and "bad"" subproblem identification based on the local Mach number or the local nonlinear residual for transonic flow over a wing.
引用
收藏
页码:A1579 / A1605
页数:27
相关论文
共 41 条
[1]   On convergence of the additive Schwarz preconditioned inexact Newton method [J].
An, HB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1850-1871
[2]   Composing Scalable Nonlinear Algebraic Solvers [J].
Brune, Peter R. ;
Knepley, Matthew G. ;
Smith, Barry F. ;
Tu, Xuemin .
SIAM REVIEW, 2015, 57 (04) :535-565
[3]  
Cai X.-C., 2002, DOMAIN DECOMPOSITION
[4]   Nonlinearly preconditioned inexact Newton algorithms [J].
Cai, XC ;
Keyes, DE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :183-200
[5]   Non-linear additive Schwarz preconditioners and application in computational fluid dynamics [J].
Cai, XC ;
Keyes, DE ;
Marcinkowski, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (12) :1463-1470
[6]   Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation [J].
Cai, XC ;
Gropp, WD ;
Keyes, DE ;
Melvin, RG ;
Young, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (01) :246-265
[7]   A restricted additive Schwarz preconditioner for general sparse linear systems [J].
Cai, XC ;
Sarkis, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :792-797
[8]   Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses [J].
Cresta, Philippe ;
Allix, Olivier ;
Rey, Christian ;
Guinard, Stephane .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (08) :1436-1446
[9]  
Dennis J.E., 1996, Numerical Methods for Unconstrained Optimization and Nonlinear Equations
[10]   NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON'S METHOD [J].
Dolean, V. ;
Gander, M. J. ;
Kheriji, W. ;
Kwok, F. ;
Masson, R. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06) :A3357-A3380