Existence of a weak solution for fractional Euler-Lagrange equations

被引:53
作者
Bourdin, Loic [1 ]
机构
[1] Univ Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat Pau LMAP, F-64010 Pau, France
关键词
Fractional Euler-Lagrange equations; Existence; Fractional variational calculus; DIFFERENTIAL-EQUATIONS; FORMULATION; CALCULUS; DERIVATIVES; MECHANICS;
D O I
10.1016/j.jmaa.2012.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive sufficient conditions ensuring the existence of a weak solution u for fractional Euler-Lagrange equations of the type: partial derivative L/partial derivative x (u, D(-)(alpha)u, t) + D-+(alpha) (partial derivative L/partial derivative y (u, D(-)(alpha)u, t)) = 0, (EL alpha) on a real interval [a, b] and where D--(alpha) and D-+(alpha) are the fractional derivatives of Riemann-Liouville of order 0 < alpha < 1. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 35 条