Maximal elements and equilibria for condensing correspondences

被引:10
作者
Chebbi, S
Florenzano, M
机构
[1] CNRS, CEPREMAP, F-75013 Paris, France
[2] Univ Paris 01, CERMSEM, F-75013 Paris, France
关键词
measure of noncompactness; condensing correspondences; maximal elements; qualitative games; generalized games; abstract economies;
D O I
10.1016/S0362-546X(98)00151-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a generalized notion of the measure of noncompactness, the existence of maximal elements for condensing preferences defined on a noncompact subset of Hausdorff locally convex topological vector space is proven. As an application, an equilibrium existence result is presented for noncompact generalized games with infinitely many agents, KF-majorized preferences and a condensing condition on the constraint correspondences.
引用
收藏
页码:995 / 1002
页数:8
相关论文
共 13 条
[1]  
Borglin A., 1976, J MATH ECON, V3, P313, DOI [10.1016/0304-4068(76)90016-1, DOI 10.1016/0304-4068(76)90016-1]
[2]   FIXED POINT THEORY OF MULTI-VALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :283-&
[3]   ON EQUILIBRIA OF NONCOMPACT GENERALIZED GAMES [J].
DING, XP ;
TAN, KK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 177 (01) :226-238
[4]  
Gale D., 1978, EQUILIBRIUM DISEQUIL, P7
[5]   FIXED POINT THEOREMS FOR CONDENSING MULTIFUNCTIONS [J].
HIMMELBERG, CJ ;
PORTER, JR ;
VANVLECK, FS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (03) :635-+
[6]  
Kuratowski C, 1930, Fund. Math., V15, P301
[7]  
Lloyd N., 1978, DEGREE THEORY
[8]  
Mehta G., 1990, APPL MATH LETT, V3, P69
[9]   FIXED-POINT THEOREMS FOR MULTIVALUED NONCOMPACT INWARD MAPS [J].
PETRYSHYN, WV ;
FITZPATRICK, PM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 46 (03) :756-767
[10]  
SADOVSKII BN, 1967, FUNCT ANAL APPL, V1, P151, DOI DOI 10.1007/BF01076087