Microscopic mechanism for asymmetric charge distribution in Rashba-type surface states and the origin of the energy splitting scale

被引:39
作者
Kim, Beomyoung [1 ]
Kim, Panjin [2 ,3 ]
Jung, Wonsig [1 ]
Kim, Yeongkwan [1 ]
Koh, Yoonyoung [1 ]
Kyung, Wonshik [1 ]
Park, Joonbum [4 ]
Matsunami, Masaharu [5 ,6 ]
Kimura, Shin-ichi [5 ,6 ]
Kim, Jun Sung [4 ]
Han, Jung Hoon [2 ,3 ]
Kim, Changyoung [1 ]
机构
[1] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea
[2] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Phys Res Div BK21, Suwon 440746, South Korea
[4] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[5] Inst Mol Sci, UVSOR Facil, Okazaki, Aichi 4448585, Japan
[6] Grad Univ Adv Studies, Okazaki, Aichi 4448585, Japan
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 20期
基金
新加坡国家研究基金会;
关键词
TOPOLOGICAL INSULATORS; BAND;
D O I
10.1103/PhysRevB.88.205408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microscopic mechanism for Rashba-type band splitting is examined in detail. We show how an asymmetric charge distribution is formed when the local orbital angular momentum (OAM) and crystal momentum get interlocked due to surface effects. An electrostatic energy term in the Hamiltonian appears when such an OAM-and crystal-momentum-dependent asymmetric charge distribution is placed in an electric field produced by inversion-symmetry breaking. Analysis by using an effective Hamiltonian shows that, as the atomic spin-orbit coupling (SOC) strength increases from weak to strong, the originally OAM-quenched states evolve into well-defined chiral OAM states and then to states of total angular momentum J. In addition, the energy scale of the band splitting changes from the atomic SOC energy to electrostatic energy. To confirm the validity of the model, we study OAM and spin structures of the Au(111) system by using an effective Hamiltonian for the d-orbital case. As for the strong-SOC regime, we choose Bi2Te2Se as a prototype system. We performed circular dichroism angle-resolved photoemission spectroscopy experiments as well as first-principles calculations. We find that the effective model can explain various aspects of the spin and OAM structures of the system.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey [J].
Arakane, T. ;
Sato, T. ;
Souma, S. ;
Kosaka, K. ;
Nakayama, K. ;
Komatsu, M. ;
Takahashi, T. ;
Ren, Zhi ;
Segawa, Kouji ;
Ando, Yoichi .
NATURE COMMUNICATIONS, 2012, 3
[2]   Spin-orbit split two-dimensional electron gas with tunable Rashba and Fermi energy [J].
Ast, Christian R. ;
Pacile, Daniela ;
Moreschini, Luca ;
Falub, Mihaela C. ;
Papagno, Marco ;
Kern, Klaus ;
Grioni, Marco ;
Henk, Juergen ;
Ernst, Arthur ;
Ostanin, Sergey ;
Bruno, Patrick .
PHYSICAL REVIEW B, 2008, 77 (08)
[3]   Giant spin splitting through surface alloying [J].
Ast, Christian R. ;
Henk, Juergen ;
Ernst, Arthur ;
Moreschini, Luca ;
Falub, Mihaela C. ;
Pacile, Daniela ;
Bruno, Patrick ;
Kern, Klaus ;
Grioni, Marco .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[4]   Fermi surface of Bi(111) measured by photoemission spectroscopy -: art. no. 177602 [J].
Ast, CR ;
Höchst, H .
PHYSICAL REVIEW LETTERS, 2001, 87 (17) :177602-177602
[5]   Enhanced Rashba spin-orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles [J].
Bihlmayer, G. ;
Bluegel, S. ;
Chulkov, E. V. .
PHYSICAL REVIEW B, 2007, 75 (19)
[6]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[7]   Robust surface state of intrinsic topological insulator Bi2Te2Se thin films: a first-principles study [J].
Dai, Xian-Qi ;
Zhao, Bao ;
Zhao, Jian-Hua ;
Li, Yan-Hui ;
Tang, Ya-Nan ;
Li, Ning .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (03)
[8]   Band structure scenario for the giant spin-orbit splitting observed at the Bi/Si(111) interface [J].
Frantzeskakis, Emmanouil ;
Pons, Stephane ;
Grioni, Marco .
PHYSICAL REVIEW B, 2010, 82 (08)
[9]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[10]   Direct observation of spin splitting in bismuth surface states [J].
Hirahara, T. ;
Miyamoto, K. ;
Matsuda, I. ;
Kadono, T. ;
Kimura, A. ;
Nagao, T. ;
Bihlmayer, G. ;
Chulkov, E. V. ;
Qiao, S. ;
Shimada, K. ;
Namatame, H. ;
Taniguchi, M. ;
Hasegawa, S. .
PHYSICAL REVIEW B, 2007, 76 (15)