PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage

被引:229
作者
Karvelis, Tautvydas [1 ]
Bigelyte, Greta [1 ]
Young, Joshua K. [2 ]
Hou, Zhenglin [2 ]
Zedaveinyte, Rimante [1 ]
Budre, Karolina [1 ]
Paulraj, Sushmitha [2 ]
Djukanovic, Vesna [2 ]
Gasior, Stephen [2 ]
Silanskas, Arunas [1 ]
Venclovas, Ceslovas [1 ]
Siksnys, Virginijus [1 ]
机构
[1] Vilnius Univ, Inst Biotechnol, LT-10257 Vilnius, Lithuania
[2] Corteva Agrisci, Johnston, IA 50131 USA
关键词
CRISPR-CAS SYSTEMS; CLASSIFICATION; ENDONUCLEASE; DIVERSITY; EVOLUTION; IMMUNITY;
D O I
10.1093/nar/gkaa208
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, CRISPR-associated (Cas) nucleases have revolutionized the genome editing field. Being guided by an RNA to cleave double-stranded (ds) DNA targets near a short sequence termed a pro-tospacer adjacent motif (PAM), Cas9 and Cas12 offer unprecedented flexibility, however, more compact versions would simplify delivery and extend application. Here, we present a collection of 10 exceptionally compact (422-603 amino acids) CRISPR-Cas12f nucleases that recognize and cleave dsDNA in a PAM dependent manner. Categorized as class 2 type V-F, they originate from the previously identified Cas14 family and distantly related type V-U3 Cas proteins found in bacteria. Using biochemical methods, we demonstrate that a 5 ' T- or C-rich PAM sequence triggers dsDNA target cleavage. Based on this discovery, we evaluated whether they can protect against invading dsDNA in Escherichia coli and find that some but not all can. Altogether, our findings show that miniature Cas12f nucleases can protect against invading dsDNA likemuch larger class 2 CRISPR effectors and have the potential to be harnessed as programmable nucleases for genome editing.
引用
收藏
页码:5016 / 5023
页数:8
相关论文
共 27 条
[1]   New CRISPR-Cas systems from uncultivated microbes [J].
Burstein, David ;
Harrington, Lucas B. ;
Strutt, Steven C. ;
Probst, Alexander J. ;
Anantharaman, Karthik ;
Thomas, Brian C. ;
Doudna, Jennifer A. ;
Banfield, Jillian F. .
NATURE, 2017, 542 (7640) :237-241
[2]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[3]  
Gasiunas Giedrius, 2012, Proc Natl Acad Sci U S A, V109, pE2579
[4]   Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J].
Harrington, Lucas B. ;
Burstein, David ;
Chen, Janice S. ;
Paez-Espino, David ;
Ma, Enbo ;
Witte, Isaac P. ;
Cofsky, Joshua C. ;
Kyrpides, Nikos C. ;
Banfield, Jillian F. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 362 (6416) :839-+
[5]   CRISPR-Cas: Adapting to change [J].
Jackson, Simon A. ;
McKenzie, Rebecca E. ;
Fagerlund, Robert D. ;
Kieper, Sebastian N. ;
Fineran, Peter C. ;
Brouns, Stan J. J. .
SCIENCE, 2017, 356 (6333)
[6]   CRISPR-Cas9 Structures and Mechanisms [J].
Jiang, Fuguo ;
Doudna, Jennifer A. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 46, 2017, 46 :505-529
[7]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[8]   A pipeline for characterization of novel Cas9 orthologs [J].
Karvelis, Tautvydas ;
Young, Joshua K. ;
Siksnys, Virginijus .
CRISPR-CAS ENZYMES, 2019, 616 :219-240
[9]   Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements [J].
Karvelis, Tautvydas ;
Gasiunas, Giedrius ;
Young, Joshua ;
Bigelyte, Greta ;
Silanskas, Arunas ;
Cigan, Mark ;
Siksnys, Virginijus .
GENOME BIOLOGY, 2015, 16
[10]   Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems [J].
Klompe, Sanne E. ;
Sternberg, Samuel H. .
CRISPR JOURNAL, 2018, 1 (02) :141-158