Compressibility of carbon fabrics with needleless electrospun PAN nanofibrous interleaves

被引:27
作者
Lomov, S. V. [1 ]
Molnar, K. [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Mat Engn, B-3001 Leuven, Belgium
[2] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Polymer Engn, H-1111 Budapest, Hungary
[3] MTA BME Res Grp Composite Sci & Technol, H-1111 Budapest, Hungary
关键词
polymer composites; needleless electrospinning; carbon fiber; nanofiber; compressibility; HYSTERESIS; MEMBRANE; DIAMETER; FIBERS; MODEL;
D O I
10.3144/expresspolymlett.2016.4
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The present paper investigates how the presence of nanofiber interleaves affects the compressibility of the layup during manufacturing of the composites and hence determining the theoretically attainable fiber volume fraction at the given processing pressure. The results show that up to the interleave areal density of 10 g/m(2) per nanofiber layer the decrease of fiber volume fraction does not exceed 3% for a laminate of carbon fiber woven fabric. Interleaves inside a fabric laminate are more compressible than a plain electrospun veil. It can be explained as the nanofibers penetrate between the carbon fibers when applying compression during composite manufacturing. It can be stated that there is a strong interference between the interleaves and the carbon reinforcement, which can lead to effective toughness improvement of the composite without significant alteration of fiber volume content.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 34 条
[11]   Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite [J].
Ersoy, Nuri ;
Garstka, Tomasz ;
Potter, Kevin ;
Wisnom, Michael R. ;
Porter, David ;
Stringer, Graeme .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (03) :410-418
[12]   Nanometre-scale rolling and sliding of carbon nanotubes [J].
Falvo, MR ;
Taylor, RM ;
Helser, A ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1999, 397 (6716) :236-238
[13]   A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].
Huang, ZM ;
Zhang, YZ ;
Kotaki, M ;
Ramakrishna, S .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (15) :2223-2253
[14]   Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications [J].
Jing, Xin ;
Mi, Hao-Yang ;
Salick, Max R. ;
Cordie, Travis M. ;
Peng, Xiangfang ;
Turng, Lih-Sheng .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 49 :40-50
[15]   Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites [J].
Kelkar, Ajit D. ;
Mohan, Ram ;
Bolick, Ronnie ;
Shendokar, Sachin .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 168 (1-3) :85-89
[16]   A MODEL ANALYSIS OF THE COMPRESSIBILITY OF FIBER ASSEMBLIES [J].
KOMORI, T ;
ITOH, M ;
TAKAKU, A .
TEXTILE RESEARCH JOURNAL, 1992, 62 (10) :567-574
[17]   Mechanical performance of laminated composites incorporated with nanofibrous membranes [J].
Liu, L. ;
Huang, Z. -M. ;
He, C. L. ;
Han, X. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 435 :309-317
[18]   Compressibility of nanofibre-grafted alumina fabric and yarns: Aligned carbon nanotube forests [J].
Lomov, Stepan V. ;
Wicks, Sunny ;
Gorbatikh, Larissa ;
Verpoest, Ignaas ;
Wardle, Brian .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 90 :57-66
[19]   Compression resistance and hysteresis of carbon fibre tows with grown carbon nanotubes/nanofibres [J].
Lomov, Stepan V. ;
Gorbatikh, Larissa ;
Houlle, Matthieu ;
Kotanjac, Zeljko ;
Koissin, Vitaly ;
Vallons, Katleen ;
Verpoest, Ignaas .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (15) :1746-1753
[20]   Compression behaviour of a fibre bundle with grafted carbon nanotubes [J].
Lomov, Stepan V. ;
Gorbatikh, Larissa ;
Verpoest, Ignaas .
CARBON, 2011, 49 (13) :4458-4465