Compressibility of carbon fabrics with needleless electrospun PAN nanofibrous interleaves

被引:27
作者
Lomov, S. V. [1 ]
Molnar, K. [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Mat Engn, B-3001 Leuven, Belgium
[2] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Polymer Engn, H-1111 Budapest, Hungary
[3] MTA BME Res Grp Composite Sci & Technol, H-1111 Budapest, Hungary
来源
EXPRESS POLYMER LETTERS | 2016年 / 10卷 / 01期
关键词
polymer composites; needleless electrospinning; carbon fiber; nanofiber; compressibility; HYSTERESIS; MEMBRANE; DIAMETER; FIBERS; MODEL;
D O I
10.3144/expresspolymlett.2016.4
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The present paper investigates how the presence of nanofiber interleaves affects the compressibility of the layup during manufacturing of the composites and hence determining the theoretically attainable fiber volume fraction at the given processing pressure. The results show that up to the interleave areal density of 10 g/m(2) per nanofiber layer the decrease of fiber volume fraction does not exceed 3% for a laminate of carbon fiber woven fabric. Interleaves inside a fabric laminate are more compressible than a plain electrospun veil. It can be explained as the nanofibers penetrate between the carbon fibers when applying compression during composite manufacturing. It can be stated that there is a strong interference between the interleaves and the carbon reinforcement, which can lead to effective toughness improvement of the composite without significant alteration of fiber volume content.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 34 条
[1]   A review on electrospinning for membrane fabrication: Challenges and applications [J].
Ahmed, Farah Ejaz ;
Lalia, Boor Singh ;
Hashaikeh, Raed .
DESALINATION, 2015, 356 :15-30
[2]  
Andrady A.L., 2008, Science and Technology of Polymer Nanofibers
[3]   Plasticized Drug-Loaded Melt Electrospun Polymer Mats: Characterization, Thermal Degradation, and Release Kinetics [J].
Balogh, Attila ;
Dravavoelgyi, Gabor ;
Farago, Kornel ;
Farkas, Attila ;
Vigh, Tamas ;
Soti, Peter Lajos ;
Wagner, Istvan ;
Madarasz, Janos ;
Pataki, Hajnalka ;
Marosi, Gyoergy ;
Nagy, Zsombor Kristof .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2014, 103 (04) :1278-1287
[4]   Adhesion and friction of a multiwalled carbon nanotube sliding against single-walled carbon nanotube [J].
Bhushan, Bharat ;
Ling, Xing ;
Jungen, Alain ;
Hierold, Christofer .
PHYSICAL REVIEW B, 2008, 77 (16)
[5]   Electrospinning for regenerative medicine: a review of the main topics [J].
Braghirolli, Daikelly I. ;
Steffens, Daniela ;
Pranke, Patricia .
DRUG DISCOVERY TODAY, 2014, 19 (06) :743-753
[6]   THEORY OF THE COMPRESSION HYSTERESIS OF FIBROUS ASSEMBLIES [J].
CARNABY, GA ;
PAN, N .
TEXTILE RESEARCH JOURNAL, 1989, 59 (05) :275-284
[7]   Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water [J].
Carroll, T ;
Booker, NA ;
Meier-Haack, J .
JOURNAL OF MEMBRANE SCIENCE, 2002, 203 (1-2) :3-13
[8]   A micromechanical compaction model for woven fabric preforms. Part II: Multilayer [J].
Chen, Zuo-Rong ;
Ye, Lin .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (16) :3263-3272
[9]  
Dzenis Y. A., 2001, USA, Patent No. [6265333, 6,265,333]
[10]   The combination of meltblown and electrospinning for bone tissue engineering [J].
Erben, Jakub ;
Pilarova, Katerina ;
Sanetrnik, Filip ;
Chvojka, Jiri ;
Jencova, Vera ;
Blazkova, Lenka ;
Havlicek, Jiri ;
Novak, Ondrej ;
Mikes, Petr ;
Prosecka, Eva ;
Lukas, David ;
Kostakova, Eva Kuzelova .
MATERIALS LETTERS, 2015, 143 :172-176