Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation

被引:280
作者
Asilturk, Meltem [1 ]
Sayilkan, Funda [1 ]
Arpac, Ertugrul [2 ]
机构
[1] Inonu Univ, Prof Dr Hikmet Sayilkan Res & Dev Lab Adv Mat, TR-44280 Malatya, Turkey
[2] Akdeniz Univ, Fac Arts & Sci, Dept Chem, TR-07100 Antalya, Turkey
关键词
TiO2; Fe3+-doping; Thin film; Photocatalysis; Degradation; SOL-GEL METHOD; STAINLESS-STEEL; TITANIA NANOPARTICLES; SIZE DISTRIBUTION; PARTICLE-SIZE; FILM; CATALYSTS; ANATASE; PHOTOREACTIVITY; HYDROLYSIS;
D O I
10.1016/j.jphotochem.2008.12.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe3+ ion-doped TiO2 particles were synthesized by the hydrothermal process at 225 degrees C. Titanium isopropoxide (Ti(OPri)(4)) was used as precursor material. Both undoped and doped TiO2 particles were used to coat glass surface. The coated surface was examined with respect to their photocatalytic performance for degradation of Malachite Green (MG) dye in aqueous solution under UV and vis-light irradiation. The particles and the films were characterized by XRD, SEM and UV/vis/NIR techniques. The results showed that crystallite size of the hydrothermally synthesized TiO2 particles are in nanoscale. Anatase was only the crystalline phase. Doping of Fe3+ ion improved the photodegradation performance of TiO2 coated surfaces. Degradation performance of Fe3+ doped TiO2. coated surfaces determined under UV- and vis-irradiation conditions was higher than the undoped TiO2 coated surface. It was concluded that the photodegradation of 2.5 mg L-1 MG under UV-light irradiation with the catalysis of Fe3+-doped TiO2 follows the pseudo-first-order reaction kinetics with the rate constant of 0.0202 min(-1). (C) 2008 Elsevier B.V. All rights reserved
引用
收藏
页码:64 / 71
页数:8
相关论文
共 51 条
[1]   Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation [J].
Adan, C. ;
Bahamonde, A. ;
Fernandez-Garcia, M. ;
Martinez-Arias, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2007, 72 (1-2) :11-17
[2]  
Akarsu M, 2006, TURK J CHEM, V30, P333
[3]   Photocatalysis in water environments using artificial and solar light [J].
Alfano, OM ;
Bahnemann, D ;
Cassano, AE ;
Dillert, R ;
Goslich, R .
CATALYSIS TODAY, 2000, 58 (2-3) :199-230
[4]   Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol [J].
Andersson, M ;
Österlund, L ;
Ljungström, S ;
Palmqvist, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (41) :10674-10679
[5]   Titania powder modified sol-gel process for photocatalytic applications [J].
Balasubramanian, G ;
Dionysiou, DD ;
Suidan, MT ;
Subramanian, Y ;
Baudin, I ;
Laîné, JM .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (04) :823-831
[6]   Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition [J].
Cao, YA ;
Yang, WS ;
Zhang, WF ;
Liu, GZ ;
Yue, PL .
NEW JOURNAL OF CHEMISTRY, 2004, 28 (02) :218-222
[7]   THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (51) :13669-13679
[8]   TIO2 AEROGELS FOR PHOTOCATALYTIC DECONTAMINATION OF AQUATIC ENVIRONMENTS [J].
DAGAN, G ;
TOMKIEWICZ, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (49) :12651-12655
[9]  
Fujishima A., 2000, J. Photochem. Photobiol. C: Photochem. Rev., V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]
[10]   Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants [J].
Herrmann, JM .
CATALYSIS TODAY, 1999, 53 (01) :115-129