Economic, environmental, and social impacts of the hydrogen supply system combining wind power and natural gas

被引:29
作者
You, Chanhee [1 ]
Kwon, Hweeung [2 ]
Kim, Jiyong [1 ]
机构
[1] Incheon Natl Univ, Dept Energy & Chem Engn, Acad Ro119, Incheon 22012, South Korea
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
关键词
Hydrogen supply; Renewable energy; Process simulation; Natural gas; Korea; MULTIOBJECTIVE OPTIMIZATION; TRANSPORTATION FUEL; ENERGY SYSTEM; OPERATION; NETWORKS; DESIGN; CAPTURE; DEMAND; SECTOR;
D O I
10.1016/j.ijhydene.2020.06.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen economy is one of the most attractive alternatives to the current carbon-based energy system, since it can be produced from diverse resources and used as a carbon-free energy carrier from the end-user's perspective. This study proposes a hybrid hydrogen supply system for the transport sector, which includes all the life stages from production, transport, and storage to final distribution (fueling stations). Particularly, we consider two types of resources for hydrogen production (i.e., renewable wind power and conventional natural gas) to identify the benefits and bottlenecks of hydrogen supply systems from the economic, environmental, and social perspectives. To achieve this goal, rigorous process models for the involved processes (i.e., hydrogen production by steam methane reforming from natural gas and water electrolysis using wind power, and hydrogen storage and transport) are developed. To illustrate the capability of the proposed system, we conducted a design problem within the hydrogen supply system in Jeju Island, Korea. In this case study, three scenarios were generated by combining different hydrogen production options: 1) wind power-based hydrogen production, 2) natural gas-based hydrogen production, and 3) integrated hydrogen production. As a result, we discussed the optimal hydrogen supply system, from the life cycle perspective, by identifying technical bottlenecks, major cost-drivers, and CO2 burdens. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:24159 / 24173
页数:15
相关论文
共 53 条
[1]   Comparative assessment of hydrogen production methods from renewable and non-renewable sources [J].
Acar, Canan ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (01) :1-12
[2]   Layered two- and four-bed PSA processes for H2 recovery from coal gas [J].
Ahn, Sol ;
You, Young-Woo ;
Lee, Dong-Geun ;
Kim, Ki-Hyun ;
Oh, Min ;
Lee, Chang-Ha .
CHEMICAL ENGINEERING SCIENCE, 2012, 68 (01) :413-423
[3]   Design and operation of a stochastic hydrogen supply chain network under demand uncertainty [J].
Almansoori, A. ;
Shah, N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (05) :3965-3977
[4]  
[Anonymous], 2008, AN APE VERS 7 0
[5]  
[Anonymous], 2018, SYSTEM ADVISOR MODEL
[6]   The Hydrogen Issue [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
CHEMSUSCHEM, 2011, 4 (01) :21-36
[7]   Energy supply, its demand and security issues for developed and emerging economies [J].
Asif, M. ;
Muneer, T. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (07) :1388-1413
[8]   Hybrid renewable energy systems for power generation in stand-alone applications: A review [J].
Bajpai, Prabodh ;
Dash, Vaishalee .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (05) :2926-2939
[9]   Recent trends in global production and utilization of bio-ethanol fuel [J].
Balat, Mustafa ;
Balat, Havva .
APPLIED ENERGY, 2009, 86 (11) :2273-2282
[10]   Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia [J].
Bekele, Getachew ;
Palm, Bjorn .
APPLIED ENERGY, 2010, 87 (02) :487-495