On the total curvature of tropical hypersurfaces

被引:2
作者
Bertrand, Benoit [1 ]
de Medrano, Lucia Lopez [2 ]
Risler, Jean-Jacques [3 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Univ Nacl Autonoma Mexico, Unidad Cuernavaca Inst Matemat, Cuernavaca, Morelos, Mexico
[3] Univ Paris 06, F-75005 Paris, France
来源
ALGEBRAIC AND COMBINATORIAL ASPECTS OF TROPICAL GEOMETRY | 2013年 / 589卷
关键词
Logarithmic curvature; amoebas; real tropical hypersurfaces; polyhedral hypersurfaces; REAL ALGEBRAIC-CURVES;
D O I
10.1090/conm/589/11741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the curvatures of amoebas and real amoebas (i.e. essentially logarithmic curvatures of the complex and real parts of a real algebraic hypersurface) and of tropical and real tropical hypersurfaces. If V is a tropical hypersurface defined over the field of real Puiseux series, it has a real part RV which is a polyhedral complex. We define the total curvature of V (resp. RV) by using the total curvature of Amoebas and passing to the limit. We also define the "polyhedral total curvature" of the real part RV of a generic tropical hypersurface. The main results we prove about these notions are the following: (1) The fact that the total curvature and the polyhedral total curvature coincide for real non-singular tropical hypersurfaces. (2) A universal inequality between the total curvatures of V and RV and anotherbetween the logarithmic curvatures of the real and complex parts of a real algebraic hypersurface. (3) The fact that this inequality is sharp in the non-singular case.
引用
收藏
页码:21 / +
页数:3
相关论文
共 17 条
[1]  
[Anonymous], 2011, P GOK GEOM TOP C 201
[2]  
Banchoff T. F., 1967, Journal of Differential Geometry, V1, P245, DOI [DOI 10.1080/00029890.1970.119925231, DOI 10.4310/JDG/1214428092]
[3]   CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRAL SURFACES [J].
BANCHOFF, TF .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (05) :475-&
[4]  
Banchoff Thomas F., 1981, PROGR MATH, V32, P34
[5]  
Bernstein DN., 1975, Funkcional. Anal. i Priloen, V9, P1, DOI DOI 10.1007/BF01075595
[6]   EULER CHARACTERISTIC OF PRIMITIVE T-HYPERSURFACES AND MAXIMAL SURFACES [J].
Bertrand, Benoit .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2010, 9 (01) :1-27
[7]  
de Medrano Lucia Lopez, 2007, THESIS
[8]  
Itenberg I., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P131
[9]  
Khovanskii A.G., 1978, Funkc. Anal. Priloz., V12, P51, DOI 10.1007/BF01077562
[10]   CURVATURE AND COMPLEX SINGULARITIES [J].
LANGEVIN, R .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (01) :6-16