Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part I: Closed form expression for the effective higher-order constitutive tensor

被引:68
作者
Bacca, M. [1 ]
Bigoni, D. [1 ]
Dal Corso, F. [1 ]
Veber, D. [1 ]
机构
[1] Univ Trento, Dept Civil Environm & Mech Engn, I-38123 Trento, Italy
关键词
Second-order homogenization; Higher-order elasticity; Effective non-local continuum; Characteristic length-scale; Composite materials; HOMOGENIZATION; DAMAGE; MODEL;
D O I
10.1016/j.ijsolstr.2013.08.014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown that second-order homogenization of a Cauchy-elastic dilute suspension of randomly distributed inclusions yields an equivalent second gradient (Mindlin) elastic material. This result is valid for both plane and three-dimensional problems and extends earlier findings by Bigoni and Drugan [Bigoni, D., Drugan, W.J., 2007. Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741-753] from several points of view: (i) the result holds for anisotropic phases with spherical or circular ellipsoid of inertia; (ii) the displacement boundary conditions considered in the homogenization procedure is independent of the characteristics of the material; (iii) a perfect energy match is found between heterogeneous and equivalent materials (instead of an optimal bound). The constitutive higher-order tensor defining the equivalent Mindlin solid is given in a surprisingly simple formula. Applications, treatment of material symmetries and positive definiteness of the effective higher-order constitutive tensor are deferred to Part II of the present article. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4010 / 4019
页数:10
相关论文
共 24 条
[1]   DISPERSION OF FREE HARMONIC WAVES IN FIBER-REINFORCED COMPOSITES [J].
ACHENBACH, JD ;
HERRMANN, G .
AIAA JOURNAL, 1968, 6 (10) :1832-+
[2]   SIZE EFFECTS DUE TO COSSERAT ELASTICITY AND SURFACE DAMAGE IN CLOSED-CELL POLYMETHACRYLIMIDE FOAM [J].
ANDERSON, WB ;
LAKES, RS .
JOURNAL OF MATERIALS SCIENCE, 1994, 29 (24) :6413-6419
[3]   Strain gradient elastic homogenization of bidimensional cellular media [J].
Auffray, N. ;
Bouchet, R. ;
Brechet, Y. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (13) :1698-1710
[4]  
Bacca M., 2013, INT J SOLIDS S UNPUB, DOI DOI 10.1016/LIJS0LSTR.2013.08.014
[5]  
Beran M. J., 1970, International Journal of Solids and Structures, V6, P1035, DOI 10.1016/0020-7683(70)90046-6
[6]   Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials [J].
Bigoni, D. ;
Drugan, W. J. .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2007, 74 (04) :741-753
[7]   Microstructural effects in elastic composites [J].
Boutin, C .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (07) :1023-1051
[8]   A micromechanically based couple-stress model of an elastic two-phase composite [J].
Bouyge, F ;
Jasiuk, I ;
Ostoja-Starzewski, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (10-13) :1721-1735
[9]   Size effects in the elasticity and viscoelasticity of bone [J].
Buechner, P. M. ;
Lakes, R. S. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2003, 1 (04) :295-301
[10]  
Cosserat E., 1909, Theorie des corps deformables