Some identities for determinants of structured matrices

被引:13
作者
Basor, EL [1 ]
Ehrhardt, T
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
[2] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
基金
美国国家科学基金会;
关键词
Toeplitz matrix; Hankel matrix; determinant;
D O I
10.1016/S0024-3795(01)00400-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish several relations between the determinants of the following structured matrices: Hankel matrices, symmetric Toeplitz + Hankel matrices and Toeplitz matrices. Using known results for the asymptotic behavior of Toeplitz determinants, these identities are used in order to obtain Fisher-Hartwig type results on the asymptotics of certain skew-symmetric Toeplitz determinants and certain Hankel determinants. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:5 / 19
页数:15
相关论文
共 13 条
[1]  
Basor EL, 2001, MATH NACHR, V228, P5, DOI 10.1002/1522-2616(200108)228:1<5::AID-MANA5>3.0.CO
[2]  
2-E
[3]   THE FISHER-HARTWIG CONJECTURE AND GENERALIZATIONS [J].
BASOR, EL ;
TRACY, CA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 177 (1-3) :167-173
[4]  
BASOR EL, UNPUB ASYMPTOTICS DE
[5]  
EHRHARDT T, 1997, THESIS CHEMNITZ
[6]  
Gordon B., 1971, J. Combin. Theory Ser. B, V11, P157, DOI [10.1016/0095-8956(71)90026-8, DOI 10.1016/0095-8956(71)90026-8]
[7]  
Krattenthaler C., 1999, SEMIN LOTHAR COMB, V42
[8]  
Mehta M. L., 1991, Random Matrices, V2nd
[9]   Toeplitz matrices with an exponential growth of entries and the first Szego limit theorem [J].
Sakhnovich, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (02) :449-482
[10]  
Silbermann B., 1990, ANAL TOEPLITZ OPERAT