Some identities on the Catalan, Motzkin and Schroder numbers

被引:11
|
作者
Deng, Eva Y. P. [1 ]
Yan, Wei-Jun [2 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Neusoft Inst Informat, Dept Fdn Courses, Dalian 116023, Peoples R China
关键词
Catalan number; Motzkin number; Schroder number; Riordan group;
D O I
10.1016/j.dam.2007.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some identities between the Catalan, Motzkin and Schroder numbers are obtained by using the Riordan group. We also present two combinatorial proofs for an identity related to the Catalan numbers with the Motzkin numbers and an identity related to the Schroder numbers with the Motzkin numbers, respectively. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2781 / 2789
页数:9
相关论文
共 50 条
  • [21] The Catalan Numbers: a Generalization, an Exponential Representation, and some Properties
    Qi, Feng
    Shi, Xiao-Ting
    Mahmoud, Mansour
    Liu, Fang-Fang
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 937 - 944
  • [22] Several explicit and recursive formulas for generalized Motzkin numbers
    Qi, Feng
    Guo, Bai-Ni
    AIMS MATHEMATICS, 2020, 5 (02): : 1333 - 1345
  • [23] Mean Value Inequalities for Motzkin Numbers
    Agoh, Takashi
    Alzer, Horst
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (06)
  • [24] Catalan Numbers
    Federico Ardila
    The Mathematical Intelligencer, 2016, 38 : 4 - 5
  • [25] Motzkin Numbers: an Operational Point of View
    Artioli, M.
    Dattoli, G.
    Licciardi, S.
    Pagnutti, S.
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (07)
  • [26] Catalan Numbers
    Ardila, Federico
    MATHEMATICAL INTELLIGENCER, 2016, 38 (02): : 4 - 5
  • [27] Parametric Catalan numbers and Catalan triangles
    He, Tian-Xiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1467 - 1484
  • [28] Motzkin Numbers of Higher Rank: Generating Function and Explicit Expression
    Mansour, Toufik
    Schork, Matthias
    Sun, Yidong
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (07)
  • [29] Variations of the Catalan numbers from some nonassociative binary operations
    Hein, Nickolas
    Huang, Jia
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [30] Some limit properties for the coefficients of the q-Catalan numbers
    Zikai Wu
    Hongxia Du
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 469 - 478