Early olfactory experience induces structural changes in the primary olfactory center of an insect brain

被引:39
作者
Arenas, A. [1 ,2 ]
Giurfa, M. [3 ,4 ]
Sandoz, J. C. [3 ,4 ]
Hourcade, B. [3 ,4 ]
Devaud, J. M. [3 ,4 ]
Farina, W. M. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Biodiversidad & Biol Expt, Grp Estudio Insectos Sociales, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, Grp Estudio Insectos Sociales,IFIBYNE, Buenos Aires, DF, Argentina
[3] Univ Toulouse, UPS, Ctr Rech Cognit Anim, F-31062 Toulouse 9, France
[4] CNRS, Ctr Rech Cognit Anim, F-31062 Toulouse 9, France
关键词
antennal lobe; associative learning; early experiences; honeybee; memory retrieval; olfaction; HONEYBEES APIS-MELLIFERA; LONG-TERM-MEMORY; ANTENNAL LOBE; ODOR REPRESENTATION; PROTEIN-KINASE; DROSOPHILA; PLASTICITY; RATS; BEE; RETENTION;
D O I
10.1111/j.1460-9568.2012.07999.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The antennal lobe (AL) is the first olfactory center of the insect brain and is constituted of different functional units, the glomeruli. In the AL, odors are coded as spatiotemporal patterns of glomerular activity. In honeybees, olfactory learning during early adulthood modifies neural activity in the AL on a long-term scale and also enhances later memory retention. By means of behavioral experiments, we first verified that olfactory learning between the fifth and eighth day of adulthood induces better retention performances at a late adult stage than the same experience acquired before or after this period. We checked that the specificity of memory for the odorants used was improved. We then studied whether such early olfactory learning also induces long-term structural changes in the AL consistent with the formation of long-term olfactory memories. We also measured the volume of 15 identified glomeruli in the ALs of 17-day-old honeybees that either experienced an odor associated with sucrose solution between the fifth and eighth day of adulthood or were left untreated. We found that early olfactory experience induces glomerulus-selective increases in volume that were specific to the learned odor. By comparing our volumetric measures with calcium-imaging recordings from a previous study, performed in 17-day-old bees subjected to the same treatment and experimental conditions, we found that glomeruli that showed structural changes after early learning were those that exhibited a significant increase in neural activity. Our results make evident a correlation between structural and functional changes in the AL following early olfactory learning.
引用
收藏
页码:682 / 690
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 2002, Experimental designs and data analysis for biologists
[2]   Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage [J].
Arenas, A. ;
Giurfa, M. ;
Farina, W. M. ;
Sandoz, J. C. .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2009, 30 (08) :1498-1508
[3]  
Arenas A, 2008, APIDOLOGIE, V39, P714, DOI 10.1051/apido:2008053
[4]   Age and rearing environment interact in the retention of early olfactory memories in honeybees [J].
Arenas, Andres ;
Farina, Walter M. .
JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 2008, 194 (07) :629-640
[5]   Floral odor learning within the hive affects honeybees' foraging decisions [J].
Arenas, Andres ;
Fernandez, Vanesa M. ;
Farina, Walter M. .
NATURWISSENSCHAFTEN, 2007, 94 (03) :218-222
[6]   Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees [J].
Arenas, Andres ;
Fernandez, Vanesa M. ;
Farina, Walter M. .
PLOS ONE, 2009, 4 (12)
[7]   Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila [J].
Ashraf, SI ;
McLoon, AL ;
Sclarsic, SM ;
Kunes, S .
CELL, 2006, 124 (01) :191-205
[8]   Vision affects mushroom bodies and central complex in Drosophila melanogaster [J].
Barth, M ;
Heisenberg, M .
LEARNING & MEMORY, 1997, 4 (02) :219-229
[9]   CLASSICAL-CONDITIONING OF PROBOSCIS EXTENSION IN HONEYBEES (APIS-MELLIFERA) [J].
BITTERMAN, ME ;
MENZEL, R ;
FIETZ, A ;
SCHAFER, S .
JOURNAL OF COMPARATIVE PSYCHOLOGY, 1983, 97 (02) :107-119
[10]   Long-term retention of spatial navigation by preweanling rats [J].
Carman, HM ;
Booze, RM ;
Mactutus, CF .
DEVELOPMENTAL PSYCHOBIOLOGY, 2002, 40 (01) :68-77