projectR: an R/Bioconductor package for transfer learning via PCA, NMF, correlation and clustering

被引:41
作者
Sharma, Gaurav [1 ]
Colantuoni, Carlo [2 ,3 ]
Goff, Loyal A. [2 ,4 ,5 ]
Fertig, Elana J. [1 ,6 ,7 ]
Stein-O'Brien, Genevieve [2 ,4 ,5 ,6 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Neurosci, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Kavli Neurodiscovery Inst, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Genet Med, Baltimore, MD 21218 USA
[6] Johns Hopkins Univ, Dept Oncol, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
关键词
EXPRESSION;
D O I
10.1093/bioinformatics/btaa183
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Dimension reduction techniques are widely used to interpret high-dimensional biological data. Features learned from these methods are used to discover both technical artifacts and novel biological phenomena. Such feature discovery is critically importent in analysis of large single-cell datasets, where lack of a ground truth limits validation and interpretation. Transfer learning (TL) can be used to relate the features learned from one source dataset to a new target dataset to perform biologically driven validation by evaluating their use in or association with additional sample annotations in that independent target dataset. Results: We developed an R/Bioconductor package, projectR, to perform TL for analyses of genomics data via TL of clustering, correlation and factorization methods. We then demonstrate the utility TL for integrated data analysis with an example for spatial single-cell analysis.
引用
收藏
页码:3592 / 3593
页数:2
相关论文
共 9 条
[1]   Efficient Generation of Transcriptomic Profiles by Random Composite Measurements [J].
Cleary, Brian ;
Le Cong ;
Cheung, Anthea ;
Lander, Eric S. ;
Regev, Aviv .
CELL, 2017, 171 (06) :1424-+
[2]   CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data [J].
Fertig, Elana J. ;
Ding, Jie ;
Favorov, Alexander V. ;
Parmigiani, Giovanni ;
Ochs, Michael F. .
BIOINFORMATICS, 2010, 26 (21) :2792-2793
[3]   A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm [J].
Fowlkes, Charless C. ;
Luengo Hendriks, Cris L. ;
Keraenen, Soile V. E. ;
Weber, Gunther H. ;
Ruebel, Oliver ;
Huang, Min-Yu ;
Chatoor, Sohail ;
DePace, Angela H. ;
Simirenko, Lisa ;
Henriquez, Clara ;
Beaton, Amy ;
Weiszmann, Richard ;
Celniker, Susan ;
Hamann, Bernd ;
Knowles, David W. ;
Biggin, Mark D. ;
Eisen, Michael B. ;
Malik, Jitendra .
CELL, 2008, 133 (02) :364-374
[4]   The Drosophila embryo at single-cell transcriptome resolution [J].
Karaiskos, Nikos ;
Wahle, Philipp ;
Alles, Jonathan ;
Boltengagen, Anastasiya ;
Ayoub, Salah ;
Kipar, Claudia ;
Kocks, Christine ;
Rajewsky, Nikolaus ;
Zinzen, Robert P. .
SCIENCE, 2017, 358 (6360) :194-199
[5]   Dimension reduction techniques for the integrative analysis of multi-omics data [J].
Meng, Chen ;
Zeleznik, Oana A. ;
Thallinger, Gerhard G. ;
Kuster, Bernhard ;
Gholami, Amin M. ;
Culhane, Aedin C. .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) :628-641
[6]   Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution [J].
Rodriques, Samuel G. ;
Stickels, Robert R. ;
Goeva, Aleksandrina ;
Martin, Carly A. ;
Murray, Evan ;
Vanderburg, Charles R. ;
Welch, Joshua ;
Chen, Linlin M. ;
Chen, Fei ;
Macosko, Evan Z. .
SCIENCE, 2019, 363 (6434) :1463-+
[7]   Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species [J].
Stein-O'Brien, Genevieve L. ;
Clark, Brian S. ;
Sherman, Thomas ;
Zibetti, Cristina ;
Hu, Qiwen ;
Sealfon, Rachel ;
Liu, Sheng ;
Qian, Jiang ;
Colantuoni, Carlo ;
Blackshaw, Seth ;
Goff, Loyal A. ;
Fertig, Elana J. .
CELL SYSTEMS, 2019, 8 (05) :395-+
[8]   Comprehensive Integration of Single-Cell Data [J].
Stuart, Tim ;
Butler, Andrew ;
Hoffman, Paul ;
Hafemeister, Christoph ;
Papalexi, Efthymia ;
Mauck, William M., III ;
Hao, Yuhan ;
Stoeckius, Marlon ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2019, 177 (07) :1888-+
[9]   MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease [J].
Taroni, Jaclyn N. ;
Grayson, Peter C. ;
Hu, Qiwen ;
Eddy, Sean ;
Kretzler, Matthias ;
Merkel, Peter A. ;
Greene, Casey S. .
CELL SYSTEMS, 2019, 8 (05) :380-+