Parametric Modeling for Two-Dimensional Harmonic Signals With Missing Harmonics

被引:11
作者
Zhou, Zhenhua [1 ]
Christensen, Mads G. [2 ]
Jensen, Jesper R. [2 ]
Zhang, Shengli [1 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[2] Aalborg Univ, Audio Anal Lab, AD MT, DK-9220 Aalborg, Denmark
基金
中国国家自然科学基金;
关键词
Fundamental frequency estimation; harmonic detection; two-dimensional harmonic signal; linearly constrained minimum variance beamformer; maximum a posteriori criterion; maximum harmonic model; FUNDAMENTAL-FREQUENCY ESTIMATION; OF-ARRIVAL ESTIMATION; COMPUTATIONALLY EFFICIENT; COPRIME ARRAY; PITCH; DOA; ALGORITHM;
D O I
10.1109/ACCESS.2019.2907456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of parametric modeling for the two-dimensional (2-D) harmonic signals with missing harmonics is addressed. The modeling process consists of two parts. First, we devise the joint spatial-temporal linearly constrained minimum variance beamformer and perform the joint estimation of the spatial and temporal fundamental frequencies for each pitch of the signal based on the maximum harmonic model. Second, we differentiate the competing signal models by the number of harmonic components and derive the maximum a posteriori criterion for the 2-D harmonic signals. As a result, the harmonic components of each pitch are detected according to their spectral powers. The simulation and experimental results are provided to show the superiority of the proposed signal modeling methodology over other existing schemes.
引用
收藏
页码:48671 / 48688
页数:18
相关论文
共 43 条
[1]   Sparse localization of harmonic audio sources [J].
Adalbjörnsson S.I. ;
Kronvall T. ;
Burgess S. ;
Åström K. ;
Jakobsson A. .
IEEE/ACM Transactions on Audio Speech and Language Processing, 2016, 24 (01) :117-129
[2]  
[Anonymous], 1992, BAYESIAN INFERENCE S, DOI DOI 10.1002/9781118033197.CH4
[3]  
Antoniou A., 2007, Practical Optimization - Algorithms and engineering applications
[4]   A new perturbation analysis for signal enumeration in rotational invariance techniques [J].
Badeau, R ;
David, B ;
Richard, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (02) :450-458
[5]  
Boyd Stephen P., 2014, Convex Optimization
[6]  
Christensen M. G., 2009, Multi-Pitch Estimation
[7]   Multi-pitch estimation [J].
Christensen, Mads Graesboll ;
Stoica, Petre ;
Jakobsson, Andreas ;
Jensen, Soren Holdt .
SIGNAL PROCESSING, 2008, 88 (04) :972-983
[8]   Sinusoidal Order Estimation Using Angles between Subspaces [J].
Christensen, Mads Graesboll ;
Jakobsson, Andreas ;
Jensen, Soren Holdt .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2009,
[9]   Accurate Estimation of Low Fundamental Frequencies From Real-Valued Measurements [J].
Christensen, Mads Grsboll .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (10) :2042-2056
[10]   Multiple Fundamental Frequency Estimation by Modeling Spectral Peaks and Non-Peak Regions [J].
Duan, Zhiyao ;
Pardo, Bryan ;
Zhang, Changshui .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (08) :2121-2133