A geometrical representation of the spectra of four dimensional nonnegative matrices

被引:5
作者
Benvenuti, Luca [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Informat Automat & Gest A Ruber, I-00185 Rome, Italy
关键词
Nonnegative inverse eigenvalue problem; Nonnegative matrices; INVERSE EIGENVALUE PROBLEM;
D O I
10.1016/j.laa.2013.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A geometrical representation of the set of four complex numbers which are the spectrum of 4-dimensional entrywise nonnegative real matrices is provided. The characterization is based on the result for the nonnegative inverse eigenvalue problem (NIEP) from the coefficients of the characteristic polynomial given in [16]. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 180
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[2]  
[Anonymous], 1951, Izvestiya Akad. Nauk SSSR. Ser. Mat.
[3]   Negativity compensation in the nonnegative inverse eigenvalue problem [J].
Borobia, A ;
Moro, J ;
Soto, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 (1-3) :73-89
[4]   An inequality for the spectra of nonnegative matrices [J].
Cronin, Anthony G. ;
Laffey, Thomas J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3225-3238
[5]  
DMITRIEV N., 1946, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, V10, P167
[6]   The nonnegative inverse eigenvalue problem [J].
Egleston, PD ;
Lenker, TD ;
Narayan, SK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :475-490
[7]  
Frobenius G, 1912, SITZBER K PREUSS AKA, P456
[9]  
Loewy R., 1978, Linear and Multilinear Algebra, V6, P83, DOI DOI 10.1080/03081087808817226
[10]  
MINC H, 1987, NONNEGATIVE MATRICES