Local convergence of quasi-Newton methods under metric regularity

被引:39
作者
Artacho, F. J. Aragon [1 ]
Belyakov, A. [2 ,3 ]
Dontchev, A. L. [4 ]
Lopez, M. [5 ]
机构
[1] Univ Luxembourg, Syst Biochem Grp, Luxembourg Ctr Syst Biomed, L-4362 Esch Sur Alzette, Luxembourg
[2] Vienna Univ Technol, Inst Math Methods Econ, A-1040 Vienna, Austria
[3] Moscow MV Lomonosov State Univ, Inst Mech, Moscow 119192, Russia
[4] Math Reviews, Ann Arbor, MI 48107 USA
[5] Univ Alicante, Dept Stat & Operat Res, E-03080 Alicante, Spain
关键词
Generalized equation; Quasi-Newton method; Broyden update; Strong metric subregularity; Metric regularity; Strong metric regularity; q-Superlinear convergence; SUPERLINEAR CONVERGENCE; BROYDENS METHOD;
D O I
10.1007/s10589-013-9615-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis-Mor, condition for q-superlinear convergence. Simple numerical examples illustrate the results.
引用
收藏
页码:225 / 247
页数:23
相关论文
共 25 条
[1]  
Argyros I.K., 2012, Numerical Methods for Equations and Its Applications
[2]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[3]   Quasi-Newton methods in infinite-dimensional spaces and application to matrix equations [J].
Benahmed, Boubakeur ;
Mokhtar-Kharroubi, Hocine ;
de Malafosse, Bruno ;
Yassine, Adnan .
JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (03) :365-379
[4]   LOCAL ANALYSIS OF NEWTON-TYPE METHODS FOR VARIATIONAL-INEQUALITIES AND NONLINEAR-PROGRAMMING [J].
BONNANS, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 29 (02) :161-186
[5]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[6]  
Dontchev AL, 2012, J CONVEX ANAL, V19, P975
[7]  
Dontchev A.L., 1995, RECENT DEV WELL POSE, P96
[8]   AN INVERSE MAPPING-THEOREM FOR SET-VALUED MAPS [J].
DONTCHEV, AL ;
HAGER, WW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) :481-489
[9]  
Dontchev AL, 1996, CR ACAD SCI I-MATH, V322, P327
[10]   GENERALIZATIONS OF THE DENNIS-MORE THEOREM [J].
Dontchev, Asen L. .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (03) :821-830